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Dark, absorbing disc is typical for spiral galaxies




The absorbing discs are made of dust — shining in IR




The same edge-on galaxy seen in visible light and
satellite UV

NGC 891

Vasaible



Whirlpool Galaxy - Mgr1

Hubble

Heritage

NASA, ESA, S. Beckwith (STScl), and The Hubble Heritage Team (STSclI/AURA) - Hubble Space Telescope ACS - STScl-PRC05-12a




,<\Necklace” seen because of shining beads but the
chain is made of IS clouds

Hubble
Heritage
NASA and The Hubble Heritage T STScl/AURA)
e Space Telescope WFPC2 C01-07




,Hole in the sky” — similar to that observed by W.
Herschel in XVIII cent.




Infrared allows to see through the ,,hole”




Dark clouds among bright stars




Sagittarius constellation — near the center of Milky Way




Composition of Milky Way photos — seen the layer
of absorbing matter




Milky Way as seen using a wide angle camera




Southern Milky Way — as seen by Inkas




...who one of the dark clouds called ,,Fox™...




The idea of flat rotation curve

Observed

Expected

Rotation velocity —>

Distance from center of galaxy —>



The idea of flat rotation curve as the result of growing
Dark Matter gravitation at galatic peripherals

VAN ALBADA ET AL.
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The postulated dark halo around a spiral galaxy

dark matter

luminous matter

@ Addison-Wasley Longman



We are likely a minority...
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Popular picture evidencing the Dark Matter in our
Galaxy

Observed vs. Predicted Keplerian
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Rotational speed {(km/s)

300

100

Nice, schematic picture...

Apparent end of spiral
arms and globular

- clusters at about 15 kpc.
Sun at 8.5 kpc from 1 .
. Expected —= dropoff of veloci
i the galactic center pec J; Pe b4
has a rotation speead
of about 220 kmy/'s.
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Rotation curve of DM based on CO lines. Clemens, D.P. 1985, Ap],
295, 422; method description. Moffat et al. 1979, A&A, 38, 197
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Calculations of orbital speeds inside and outside the
solar orbit

outer orbit -
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Rotation Velocity (knv's)

Rotation curves and the methods of their
determination
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(Moffat, FitzGerald, and Jackson 1978 - in
termine more accurate distances by ZAMS fit
magnitude diagrams for stars in the neighbo
less) HIT regions, in the longitude range § =

HIT regions have such stellar 'aggregates'

surrounding them. Image tube slit spectrograms for MK classification and
(some) for radial velocity dete
brighter member stars. The dista
not systematically differ
mined for the same aggregates,

from Georgelin's (1975) distances for stars studied in common. ~

RECENT EVIDENCE ON THE ROTATION CURVE OF OUR GALAXY FOR R{> R

19791IAUS.. .84..2217

P. D. Jackson
University of Maryland

M. P. FitzGerald
University of Waterloo

A. F. J. Moffat
Université de Montréal

Studies of the rotation curve of our Galaxy at galactocen?ric radii,
R, greater than the solar distance, R, , from the center requlrevthe use
of conventional optical techniques since the distances to as well as the
radial velocities of Population I objects are needed.

HII regions are the best objects to use for a study of the rotation
curve over large distances because (i) they can be detected easily on,
say, Palomar red prints, (ii) they have high intrinsic luminosity and 4
(iii) they have low ( ~ 8 km/sec) dispersion from circglar galactic ro
tation. Y. M. Georgelin's thesis (Georgelin 1975) provides us with H a
radial velocities for HII regions which are sufficiently ac;uratg that. ,
the measurement error is usually less than the actual velocity dispersion.
However, she usually relied on MK spectral classification of pregu@ed ex:
citing stars in order to determine the distance t? the tegions: This prf
cedure is subject to the relatively large errors in MK %u@inOSJty deter
mination for a single star as well as possible misidentlflcation.pf the
exciting star. Nevertheless, Georgelin's work clearly showed a discre-

The present authors have undertaken extensive UBV observations

rhood of distant (mostly Sharp-
= 150° to 260°. Many of the

(clusters or associations)

rminations were taken for many of the

nces we determined by ZAMS fitting were
ent from spectrophotometric distances we deter- -
nor were they systematically different



Vrot

Rotation curve of the Galaxy
Sofue, Y. et al. (2009, PASJ, 61, 227)
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Schematic sketch of the galactic rotation

anticenter

galactic center



Galactic disk is full of evenly distributed
tiny clouds
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CH and CH+ radial components share radial
velocities with those of Call and Nal

Normalized intensity
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Relative intensity

The same effect in another object
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Accordant stellar and interstellar radial velocities
D=5500pc
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Normalized intensity

Another similar example D=3000pc
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For majority of OB stars rad vels are hardly precise
(variability, binarity) D-2200pc
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Troubles while determining radial velocity of a
star (spectra from Terskol)
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Our radial velocity vs. that given in Simbad
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Which lines should be used for measuring radial
velocities?
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Ha line, originated in the HII region is hardly
useful as the spiral tracer
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Stellar (Simbad) vs. Interstellar radial velocities
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Radial velocities of Call clouds and model curves
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The same plot but with open clusters shown as open
diamonds
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Relative intensity

What can the spectral resolution change?
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Correlated abundances of CO and CH molecules

14-4-17
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The rotation curve for stars — distances from Sp/L.
and CH main components - squares
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Averaged rotation curves: red circles - Call distances and radial
velocities; blue asterisks - stellar values, green diamonds -
stellar distances + CH radial velocities; lines. magenta — flat,
orange — Keplerian;

Radial velocity (km/s)

Distance from Sun



The same plot in another coordinates and with
the Sofue points added
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Schematic sketch of the galactic rotation

anticenter

—

galactic center



Rotation curve in the anticenter direction
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Conclusions

o Call clouds and open clusters, observed along the
1=135° sightline, clearly suggest the keplerian
rotation of the disk of our Galaxy

o A majority of radial velocities toward the galactic
anticenter supports the idea of circular
(thermalized) orbits of galactic objects until a
certain radius

o Call radial velocities are radial components of
orbital velocities only

o The DM rotation curve 1s keplerian and does not
suport the idea of DM halo



Very large distances — cepheids as possible standard
candles

Period-Luminosity Relation for Cepheids

\

===(lassical Cepheids

Absolute magnitude

~==Type Il Cepheids

Days



Formulae for distance measurements

The following relationship between a Population | Cepheid's period P and its mean absolute magnitude M,, was established from Hubble Space Telescope trigonometric
parallaxes for 10 nearby Cepheids:

M, = (—2.43 + 0.12)(log,, (P) — 1) — (4.05 + 0.02)

1911231 The following relations can also be used to calculate the distance d to classical Cepheids:

with P measured in days. |
5log;,d =V + (3.34) log;, P — (2.45)(V — I) + 7.52. [&°]
or
5log,,d =V + (3.37) log,, P — (2.55)(V — I) + 7.48 .1°°]

I and V represent near infrared and visual apparent mean magnitudes, respectively.



0614 diffuse band as a proxy of extinction
towards cepheids
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Current determinations of the Hubble parameter
707>4_, , (km/s)/Mpc
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From Perlmutter et al.

Could the faintness of the supernovae be due
to intervening dust?

The color measurements that would show
color-dependent dimming for most types of
dust indicate that dust Is not a major factor.

Our SNe la distances have the important
advantage of including corrections for
Interstellar extinction occurring in the host
galaxy and the Milky Way.



Atypical extinction?

high-redshift SNe with significant extinction
were discarded rather than included after a
correction for extinction.

Some modest departures from the Galactic
reddening ratios have been observedin the
Small and Large Magellanic Clouds, M31, and
the Galaxy, and they have been linked to
metallicity variations



Where the observed extinction is originated?

We also employ a refined estimate of the selective
absorption to color excess ratio, R,, = A, /E;_,,, which has
been calculated explicitly as a function of SN la age from
accurate spectrophotometry of SNe la (Nugent, Kim, &
Perlmutter 1998a).

This work shows that although R,, Is the canonical value
of 3.1 for SNe la at maximum light or before, over the
first 10 days after maximum R,, slowly rises to about 3.4.
For highly reddened SNe la, this change in R,, over time
can appreciably affect the shape ofthe SN la light curve .



http://iopscience.iop.org/1538-3881/116/3/1009/fulltext/980111.text.html#rf80
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»leen” clouds per a kiloparsec

The Level of Detail- is... just simply awesome!
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Conclusions

In the estimates of distances to Supernovae Ia the
possible intergalactic extinction is neglected

The intergalactic extinction law can be severely
changed by the cosmological redshift

The above effects may lead to overestimates of the
distances to cosmological objects if SN Ia are used as
nStandard candles”.



