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Part I: Galaxy Structure



1. Elliptical Galaxy

1.1 Self-gravitating system

1.2 Stellar dynamics

1.3 Structure and classification of elliptical
galaxies

1.4 Mass of elliptical galaxies

1.5 Scaling relations for elliptical galaxies



1.1 Self-gravitating system



Virial theorem of N-body system

The equation of motion of N-body system is

i oo __i

N --
m'x -> 0", g=123i=12 N (1)

s
X (370

where a gravitational potential made by these particles
themselves is

. . i
Multiplying X on both sides yields
. o)
i il i (1)
> mX X, =— > X, — (2)
OX V.



Virial theorem of N-body system

The rhs of eq. (2) is a potential-energy tensor

) X (x) =X
W, = ZX “”=ZGm'm’ =% .f) 3)

i, j#1) ‘)?’ —S(’"

Since eq. (3) is symmetric under an interchange between i and j,
we obtain

(x) - X! )(xj —x")
:——G Zm m’ p
(i, j#1) !)‘(’ —*'!3

Also, the above is symmetric for a and, 3, the rhs of eq. (2) is
also symmetric. Then, it leads

i il 1 i i o i o ldzla
Zm'x;xﬁ:EZm (xaxﬂthaxﬂ):5 L -2K,; )

dt



Virial theorem of N-body system

Thus, we obtain the so-called “tensor virial theorem”
1d°1,
2 dt?

=2K,_ +W 3)
where

IaﬁzZm'xaxﬁ,K %Zm'x;x'ﬂ

If we take the trace of eq.(5), we have the scalar virial theorem

| = 2K +W
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Virial theorem of N-body system
In the case of virial equilibrium, we have

2K+W =0 (6)
Recall that the total energy of the system is

E=K+W (7)
Therefore, we have

(8)



The specific heat of a self-gravitating system

This implies that if we take away the energy from the system,
the kinetic energy Iincreases.

W
E=-K="- 8)

Namely, the specific heat of the system is negative.
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The specific heat of a self-gravitating system

This implies that if we take away the energy from the system,
the kinetic energy Iincreases.

W
E=-K="- 8)

Namely, the specific heat of the system is negative.

This leads to a very important conclusion that a self-gravitating
axratan Aanc nat L ---------- tlalh mez =2
DyDlClll aoCs Nnov nave an CLllllllUl 1UIl.

Because of this special property, structures spontaneously
emerge in self-gravitating system (self-organization)!

This is called the gravothermal catastrophe.




Virial equilibrium and dynamical timescale

In the case of virial equilibrium, we have
2K+W =0

Then,
G M

‘R
In this case, the dynamical timescale is evaluated by

VZ

1

AN ™ /\7J R3 2
t...(crossing time) = R/V = LGM

1

\/@ dyn

(dynamical time)

Ingd
~N/




1.2 Stellar dynamics



Large stellar system as a collisionless system

Collisional system

The system where the two-body interaction is working
effectively within a timescale under consideration (in our case,
the age of the Universe).

{8 "
Collisionless system

The system where the two-body interactions does not work
effectively.

But what timescale should we use to evaluate the effect
of collision?




Relaxation time

For this purpose, we estimate “the two-body relaxation time”
of the system. We set as follows:

_G(m; +m,)
vZb

A number of scattering of stars with velocity (v, v+dv) and
impact parameter (b, b+db) in a time interval dt is expressed as

27bf (v, t)vdtdbdv

Then, we evaluate an accumulated effect of small angle
scatterings with a mean square velocity change Av? (Av << V).



Relaxation time

The amount of Av is evaluated as

AV 4Gm ,  16G*m?
—~Y¥Y~ — (AV) =
Vv vZb (av) vb?

Then, the amplitude of a velocity change is given by

(Av) x 27bf (v, t)vdtdbdv = 322G*m’ l% f (v)dtdbdv
v

By using these equations, we estimate the accumulated effect
by evaluating jdtdbdv



Relaxation time

Since

J'OOO v f(v)dv = n<v‘1>, :2 % = h{%?]

Here, b, = R (system size) and let b, = impact parameter of 90

scattering, then
T 2Gm 2Gm
tan| — [=1= S b=

VDb V

2
{32
b, 2Gm

Using virial equilibrium, we see

» _GMN
R

4 2 2
Thus we obtain

V

5



Relaxation time

Hence,

Thus, we obtain

2
(AL] ~ 322G m*nv> ln(ﬂjt
Y} 2

By using this relation, we can estimate the relaxation time, t

relax?
122 vt n bl A\II\I — 1
111 VYviliQU1ll V/V — l,

. v’ - V'R’ _0.04N
relax ~— T _ Cross
322G*m*nin E 24G*mM In ﬁ In ﬁ

2 2 2

(the second step we have used M = 4TtmnR3/3, and the third
step v = GmN/R).



Astrophysical examples

Globular clusters - * i

N ~ 10°%, R~20pc, v ~ 10kms-!

tauri
t. ~103% yr << 10'% yr (~ the age of the Universe)

= collisional system.

Elliptical galaxies
N ~ 101912/ R~10-100kpc, v ~ 200kms-!
t ~1018 yr >> 10" yr

= collisionless system!

M87



Basic equation: collisionless Boltzmann equation (CBE)
Fluid:
local equilibrium << dynamical time << global equilibrium
= can be described only as a function of position.
Stellar system:
dynamical time <<local equilibrium ~ global equilibrium

= depends on position and motion independently (6-

dim phase space)

= described by probability distribution function (DF) or
phase density function f(X,V,t).

This is related to density as

= [ d*vf (x,V)



Basic equation: collisionless Boltzmann equation (CBE)

Collisionless system:

A point in the phase space does not jump but moves smoothly,
l.e., the “phase fluid” conserves mass. Hence, the distribution
function (DF) conserves along a streamline.

‘;‘; - Z: +aiv(fv\*/)=o,wz(>z,\7)
(cf fluid ‘Zf 2’; ;{(px)zo)

ot OX OX oV

And density should suffice Poisson eq. at the same time
VO=4 G p=14 ﬂdo3\7f (%,V)



Jeans equation

Then, we derive Jeans equation to describe stellar system.
We multiply V'ivmjV”k on both sides of the CBE and
integrate over velocity (to obtain moment equations):

of _ 0 oD of
4V —f-_—=—Z 0
ot OX OX OV

V

jv' VT n—d v+_[v' AY id3\7—@ AV Oid3\7:0,
OX OX oV

,OVIIVm n J‘VI ik nfd v



Jeans equation: continuum equation (zeroth order)

j@d3V+Iv 6—]:d3\7—6q) N 42 =0
ot OX OX < oV

1. First term: by definition, p= j- fd*v,
2. Use V——J‘Vfd?’*

3. By using the divergence theorem, the volume integral
is transformed into a surface integral, and let f — 0
rapidly as |\7| —> 0 .

Thus we have the continuum equation

op n 6(,0\7) —0 (6)
ot OX




Jeans equation: equation of motion (first order)

PV o\pv,) (PVkV|) 8CI) _
+ka‘ ox. Cox | 7

Defining a velocity dispersion tensor as

O'kzl = (Vk —Vi )(VI _\7|):VkV| Al (8)

and using the continuum equation [eq. (5)], we obtain

o, o, o0 dlpot) o
—+ - — — \“J
o ot 'OL‘ 8xk o OX, OX,
Here we used
of OV,
— dV=—|—fdV=-,
I oV, OV i/

]



Jeans equation
Equation (9) is called Jeans equation
oV, _ 0V, o® ol\po;
l pzvk _ (,0 kl)
K

M, N __
" ox Cox ox

This is similar to Euler equation for fluid mechanics:

1. Lhs is a Lagrange differential of mean velocity along
with a streamline.

2. First term of rhs is the gravitation.

3. Second term of rhs corresponds to pressure gradient,
but different from ordinary fluid, it is anisotropic
tensor.

To know o2, we need the next-order moment eq.

— We adopt some assumption to solve this equation.



1.3 Structure and classification of elliptical
galaxies



Introduction: ellipticals as complicated system

Until the late 1970s, it was believed that elliptical galaxies are
simple systems: gas-free, disk-free, rotationally flattened
ellipsoids of very old stars. In the last 20 years, most of these
assumptions turned out to be wrong or only crude
approximations:

1.

Massive ellipticals are not flattened by rotation, but are
anisotropic.

Ellipticals do have an interstellar medium, but it is hot T >
10°K.

A significant fraction of ellipticals exhibits Kinematic
peculiarities (like counter-rotating cores) which point to a
‘violent’ formation process.

Low mass ellipticals seem to contain intermediate age stars.
All ellipticals and bulges seem to contain supermassive
black holes amounting to about 0.2% of their mass.



Classification of ellipticals

1. Normal ellipticals

i. Giant elliptical(gE’s),

ii. E’s,

ili. compact elliptical (cE’s),

iv. (S0 galaxies).

Absolute magnitude range: Mg = -23 ~ -15.
2. Dwarf elliptical(dE’s)

Comparing with cE’s, they have

a. smaller surface brightness,

b. more metal-poor
3. c¢D galaxies

a. have absolute magnitude Mg ~ -25
usually located near cluster center

have extended diffuse envelope
have high M/L

=0 F



Classification of ellipticals

4. Blue compact dwarf galaxies (BCDs)
have B -V =0.0 ~0.3,
very gas-rich
often with intense star formation (in this sense, they are
not exactly ellipticals).
5. Dwarf spheroidal galaxy
have very low luminosity (Mg ~ -8),
have very low surface brightness.




Structure: de Vaucouleurs profile

Profiles of E’s and cD’s obey de Vaucouleurs law.

[(r) —7 _10—3.33((r/re)”4—1)

Also, Re and Mg are related

= average surface brightness p,, . and Mg are also
related: Kormendy relation

Specific features for each type:

1.
2.

Normal E’s best fit de Vaucouleurs profile.

Profiles of higher and lower luminosity E’s decline
slower and faster at large r. Especially, cD’s only obey at
the innermost part.

dE’s are better described by an exponential profile.



u(T,) [mag/arcsect]

Structure: de Vaucouleurs profile
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Structure: three dimensional properties

Isophotes are to the first order elliptical
— the density is constant on ellipsoids, i.e. the possible
shapes are:

1. oblate (a =b > c, rotationally symmetric ellipsoid, like a
pancake)

2. prolate (a> b =c, like a lemon)

3. triaxial (a # b # c, ellipsoid, like a box with smoothed edges)

All are projection of three-dimensional density profiles.

(a) (c)



Structure: projection of three dimensional profile

Since the three-dimensional structure is triaxial, the projected
profile has an axial twist.



Structure: isophotal shape

Isophotes are generally not exactly elliptical. The “boxiness”
or “diskiness” of isophotes is usually quantified by measuring
a quantity denoted a, First the ellipse Re(o) is fitted to the
isophote. For each angle ¢, one determines the distance

o(¢) = Ri(¢) — Re()

between the radii of corresponding points on the ellipse and
on the isophote. Then one expresses the function o(¢) as a
Fourier series:

5(p)=5+Y a,cos(np)+Y b, sin(ngp)
n=1 n=1

a, < 0: boxy isophotes,
a, > 0: disky isophotes.



Structure: isophotal shape

NGC 821: a,Ja ~ +0.02, disky NGC 2300: a,/a ~ -0.02, boxy




Structure: what determines the shape of ellipticals?

Brightness profile is determined by the distribution of orbits
of stars. If the velocity distribution is anisotropic, the stellar
distribution does not become spherically symmetric.

If statistical properties of the distribution of stellar orbits is

independent of time, it is a static system. Though elliptical

galaxies are collisionless system, i.e., two-body relaxation does

not take place, elliptical galaxies have some homogeneous

properties as we have seen:

1. de Vaucouleurs profile

2. Not rotationally supported

3. Triaxial ellipsoidal figure

= Even if without knowing the details of dynamical structure,
we imagine that a certain “relaxation” occurs.

What is it?



Relaxation for collisionless system?: violent relaxation

What made collisionless system “relaxed”? Lynden-Bell
(1967) proposed a possible mechanism referred to as “violent
relaxation”.

We start from the collisionless Boltzmann eq.
of _ of [ 0¢ \of
—++V- . =
ot oX \ OX / oV
The potential part

changes violently both
in space and time.

0

Microscopically it causes a phase mixing. Of course

::> the DF, f, conserves, but it becomes smaller and
smaller in scale. Then, macroscopically the coarse-
grained DF f goes to an “equilibrium”




Relaxation for collisionless system?: violent relaxation

Mixing of phase distribution by a violent change of the mean
gravitational field in space and time, similar to the mechanism
that a chaos occurs.

The resulting distribution is referred to as Lynden-Bell
distribution.



Relaxation for collisionless system?: violent relaxation

In the context of statistical mechanics, Lynden-Bell
distribution is regarded as the fourth distribution:

Particle
Exclusion  Indistinguishable Distinguishable
Without B-E distribution @ M-B distribution

With F-D distribution = Lynden-Bell distribution



Relaxation for collisionless system?: violent relaxation

However...

This distribution was not perfectly reproduced by numerical
experiments. Even worse, some fundamental problems as a
consistent theory were pointed out.

VY

Relaxation process of collisionless system still remains as an
open problem.

Different derivation of the theory was proposed (Nakamura
2000). Since this is also closely related to a long-standing
problem in plasma physics (collisionless space plasma often
shows Maxwellian distribution, known as Langmuir’s
paradox: Langmuir 1928).



1.4 Mass of elliptical galaxies



Mass of elliptical galaxies: classical observation

M/L ~ 5 at center of ellipticals; this does not require
additional mass.

However, from the velocity dispersions of planetary
nebulae or stars, a whole elliptical galaxy was found to be
M/L > 10 for.

Since the M/L of globular clusters is ~1-2, and ~ 2-3 for old
galaxies assuming a normal initial mass function (IMF),
we found that elliptical galaxies are more massive than we

thought.



Mass of elliptical galaxies: classical observation

The measurement of a mean star
velocity in an elliptical galaxy: i sy

*
* X *

the Doppler broadening of the
absorption lines of a galaxy

= dispersion of the star velocity
along the line of sight

AN 11— (v/c)
% =\ T




Mass of elliptical galaxies: classical observation
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Mass of elliptical galaxies: X-ray observation

Since elliptical galaxies have hot X-ray gas, this can be
used to estimate their mass reliably.

Assume a hydrostatic equilibrium.

dP GM (r
dP/dr —=—p(T) 2( )
dr r
Using the equation of state (ideal gas),
P =nk,T =—2—k,T
ol HM,,

We obtain

M(<r)=r

kBT[_dlnp_dlnT]
Gu\ dlnr dlnr



Mass of elliptical galaxies: X-ray observation

From X-ray observation, we can obtain n(r) and p(r). By
assuming some simplifying scaling,

(04

Noc

& oC nz o ¢

-2«
|, c R

M(<r)=4-10"M '[1()?1{]'[101’;;9(:]

we obtain

and this yields a consistent mass estimate with velocity
dispersion observation with Jeans equation.

Typically Mg,, ~ 10113 M, suggesting dark matter.



1.5 Scaling relations



Faber-Jackson relation

A relation between galaxy luminosity vs. velocity dispersion
at the center.

From the virial theorem (assuming a constant surface
brightness B):

2 2
2XEM =27 IORS o GM
2 R, R
L=47R°B

4
= L=~ro

In practice, B is not constant
= the power index takes a value between 3 and 5.



Faber-Jackson relation

Since a luminosity of a galaxy is determined by using a
velocity dispersion which can be directly measured, this
relation is used to estimate a distance to a galaxy without
going through the Hubble constant.

However in practice, the dispersion is pretty large (~ 2 mag).

2.6} o
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i & IntE’s
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The fundamental plane relation

Since the dispersion in the Faber-Jackson relation is large,
people tried to consider a second parameter to introduce
(Dressler 1987; Djorgowski & Davis 1987; and others).
parameter space

We operate now in the 3-D space:

R — radius,

| — luminosity,

o— velocity dispersion,

or additionally (more dimensions)

n — surface brightness and other parameters

Empirical relations = a plane in the 3D space (or even
with more dimensions).



The fundamental plane relation

Space of relations in 3D; we find log R,

a thin surface in the space. 15
24

Faber-Jackson and Kormendy

relations (and other 2D relations)

are simply projections of this . |

plane on the 2D surface. Their |

dispersion are simply a reflection s

of the non-flat shape of this plane

seen in 3D.

2.2

10 -

log L,
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The fundamental plane relation

There are also numerous additional or alternative parameters
introduced, e.g., Dressler parameter D_ (a radius inside of
which the total surface brightness reaches a certain value
(20.75 B mag arcsec™).

Among others, the fundamental plane can conveniently be

visualized in the k-parameter space, using the parameters
(Bender, Burstein & Faber 1992, 1993, 1994):

) 1 1/3 2
— log(cr,) «logM, «, = log(o"2, /7,) «clogZ, (%] , K= log(o™ /% /r.) e log(%]

"TTA N J3

These new coordinates can be found systematically by a
statistical method like the principal component analysis (PCA).



The fundamental plane relation: k-space
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The fundamental plane relation: k-space
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The fundamental plane relation

Even though the kinematics of ellipticals can appear to be
highly complicated in detail, the objects must in fact be
rather similar with respect to their global structure and
their stellar M/L.

No sufficient theoretical explanation yet for the existence of
fundamental plane (ellipticals as a result of mergers of disc
galaxies?).



2. Spiral Galaxy

2.1 Structure of spiral galaxies
2.2 Rotation curves of spiral galaxies
2.3 Scaling relations for spiral galaxies



2.1 Structure of spiral galaxies



Structure of spirals and lenticulars

We fit luminosities of a disc and spheroidal element (bulge)

separately.

1. Spheroidal element (bulge) can be described similarly to an
elliptical galaxy, i.e., de Vaucouleurs’ r'/4-law.

—3.3307[(r/r€ )”4—1]

I(r)=1-10 (1)

Integrated luminosity is given by integrating eq.(1),

L =7215-7l -7 2)



Structure of spirals and lenticulars

2. A disk can be almost always described by an exponential
fit:

£

I(R)=1e * 3)

where
ry: disk scale length (for the Milky Way, r, = 3 kpc)
|,: the central surface brightness.
N.B. the disk scale length is different from disk scale
height.

Luminosity is given by integrating eq.(3),

L, =21l.R; 4)



Structure of spirals and lenticulars: Sérsic profile

To describe these profiles, we can use a generalization of the
de Vaucouleurs' formula, which works both for ellipticals
and spirals:

1(N=1(ro)exp{-b, [(r/r)) V=113 )

where n : Sérsic index. This profile is called “Sérsic profile”,
named after the inventor (Sérsic 1963).

N =4 : de Vaucouleurs’ profile,
n =1 : exponential profile



Structure of spirals and lenticulars: Sérsic profile

log Surface Brightness

log Radius

N.B. this is a log-log plot and an exponential profile is NOT a
straight line.



Sérsic index distribution as a function of luminosity

Sersic index (n)

S'ersic index (n)
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2.2 Rotation curve of spiral galaxies



Dynamics of spiral galaxies: observation

Rotation curve: dependence of the rotation velocity around
the galaxy center (more generally — any body in any
system), vV__(r), on its distance from the center r.

This is measured by spectroscopic observation of emission
lines.

A B C

A /\ blueshifted

C redshifted /\

«—— bluer wavelength redder —»

Copyright ©@ Addison Wasley.




Dynamics of spiral galaxies: observation

At optical wavelengths, only the innermost part of galaxy
disk can be observed: so radio observation of hydrogen
21cm line is often used.
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Dynamics of spiral galaxies: expected rotation curves

Assuming (for simplicity) spherically symmetric structure of
a galaxy, the virial theorem can be written as:

GM(< R)/R? = VZC(R)/R (19)
which means
M(<R) = Vzrot(R) R/G (20)

This allows us to compute mass of galaxies, M.



Dynamics of spiral galaxies: expected rotation curves

Appearance of a rotation curve depends on the mass

distribution of a galaxies M(<r).
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Schematic description of rotation of a disk galaxy

Keplerian disk Constant velocity



VELOCITY IN PLANE OF GALAXY (km/s)

Observed rotation curves of spiral galaxies
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Observed rotation curves of spiral galaxies
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Observed rotation curves: implication for dark matter

For most of spiral galaxies, their rotation curves remain flat
out to radii much larger than the extent of the optical disk!

From V(R) = constant and eq.(19), it follows
M(R)~R 21)
For the majority of spiral galaxies no decrease in the
circular velocity has been measured even beyond radii of
50 kpc to 100 kpc. This implies
M M, (22)

= >30
L, L

B.®
In contrast, only from the observable matter in the galactic

disk, we have

M
Lﬂ (stars and gas) =5—=2 (23)

B B,O
Dynamically measured mass is at least 5 times more dark
matter than M.+M,,; — strong evidence of dark matter!




2.3 Scaling relations for spiral galaxies



Tully-Fisher relation

Av: the width of the line of neutral hydrogen H 21cm after
correction for inclination. There is a proportional relation
between galaxy luminosity at a certain band and Av:

I_band - (Av)a (25)

1. Opik (1922) estimated a distance to M31 using the virial
theorem before it has been proven to be out of the Milky
Way.

2. Originally a = 2.5 from V-band data (Tully & Fisher
1977).

3. Later more accurate data, a ~3 — 4 (depending on the

observed wavelength).
4. For L (1.65 microns) a=3.2.



Tully-Fisher relation: schematic description
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spiral galaxies rotate, and the rotation

speed is proportional to the mass of
the galaxy

measurements of neuiral hydrogen (HI)
display a “‘double-horned’” profile,
where the width of the line indicates the
mass

a plot of line width versus absoluie
luminosity of a galaxy iscalled the
Tully-Fisher relation. When calibrated
using galaxies with Cepheid distances,
the TF relation is used to determine
Hubble's constant.



Tully-Fisher relation as a distance measurement tool

T-F relation at near IR has been proven to be very accurate
— distance estimation
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Tully-Fisher relation: crude analysis

Assume that the distribution of mass in the disk follows the
surface brightness profile

| =1, exp(-R/R,)

The total mass in the disc will be then

M = j: 2/RI, exp[— RE)dR =24 ,R,’ (26)

0

This means that a large fraction of mass is concentrated in
the disk of the radius R ~ R,.



Tully-Fisher relation: crude analysis

Assuming that all the mass is concentrated in the disk
center and that the gravitational force and centrifugal
force balance each other for a given star (or mass element),

we have 2
V | R
_max 272' 00 (27)
RO R02
which yieldsv__ ~ (|OR0)1/ %, ie, M~ Vmax3'

If the surface brightness in the spiral galaxy centers is
constant and we assume a constant M/L in the disks, we
obtain L~v__ 3 However, both of the assumptions are not
realistic, as we have seen above.



Baryonic Tully-Fisher relation

The classical Tully-Fisher relation depends on the observed
wavelength because it uses optical/NIR luminosity, which
is strongly dependent on star-formation history or other
non-dynamical properties (we see later).

This problem can be overcome by using the baryon mass
instead of optical luminosity: baryonic Tully-Fisher
relation.

Here it is worth stressing that whichever indicator we use,
reproducing Tully-Fisher relation by theoretical model
remains a challenge.



Baryonic Tully-Fisher relation

T
log 7,

McGaugh et al. (2000)



Baryonic Tully-Fisher relation
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In the extended BTE, the slope
becomes shallower from dwarft
spheroidals, normal galaxies, to
clusters (clusters: violet symbols,
giant galaxies: blue symbols, and
dwarf spheroidals: red symbols).

= Feedback?

However, this sample does not
include gas-rich dwarf galaxies.

Toward lower HI masses!




Part II: Evolution of Galaxies



3. Luminosity Function of Galaxies

3.1 Definition and basic properties

3.2 Dependence of luminosity functions on various
properties

3.3 Evolution of galaxy luminosity function



3.1 Definition and basic properties



Galaxy luminosity function: definition

Definition: number density of galaxies as a function of
luminosity.

More quantitatively, galaxy luminosity function ¢(L) is
defined so as to make ¢(L)dL be the number of galaxies
with luminosity in an interval [L, L+dL].

N.B. In optical astronomy, absolute magnitude M is
always used as an equivalent of luminosity L. In this
case, its mathematical functional form is different, but
(very confusingly) expressed with the same symbol as
o(M)dM. Also, log L is very often used, again with the
same symbol ¢(log L)d log L.



NUMBER

Galaxy luminosity function: Schechter function
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Schechter-function related physical quantities

Galaxy number density (number per unit comoving
volume):

N(>L)= [ ¢(L)dL'= n*F(a +1,L£]

L
*

Galaxy luminosity density (luminosity per unit
comoving volume):

j L'¢(L')dL' = n, LF[a+2 LLJ

sk

Because of the functional form, the integral properties
are described by Gamma function.



Local galaxy luminosity function: SDSS (optical)
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Local galaxy luminosity function: IRAS PSCz (far infrared)
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13

The far-infrared (FIR) galaxy
LF is not well described by the
Schechter function. Instead, a
function with much slower
decline at luminous end is used.

¢(L) = ¢{L£*j exp{— 2(1)_2 10g2(1 + II__*H

This form is one of the most
frequently used, proposed by
Saunders et al. (1990),
parameterized by L., ¢., o, and
GC.




3.2 Dependence of luminosity functions on
various properties



Galaxy luminosity function: environmental dependence
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Galaxy luminosity function: morphological type dependence

10~
10-2
10-3
—104
lQ..lD‘f’
~ 1078
ElO'l
%1072
©10-2
104
10-5
10-6

-22 —-20 —-18 -16

-22 —-20 —-18 —-16 -22 —-20 —-18 —-16

L LI I LB LR BN B "|"'|"'|"'|j§

= R_=20.5

i -

E e D P f =
3 70 PTLG A LI E
N L] 7 “D ]

T ~
3 v E
- &/ / :
- / Sc+Sd 3
E / Sb+Se 1/Sm g
- ——E+S0+Sa ' _dsph ]
/
E 1 L | | L | | 1 l L I | L 1 | | I | .|II 1 I 1 1 | I [l l [l I | 1 | L L l |§
E 1 T | I T I | 1 I T I I T L] | I I I T I I T I I T | T T |-j
0]

F R,=21.5 T 3
= T _}.",J-ﬂf‘ _
E e TT E
= _f ,r.-’_ﬁ - 1 3
- o , .
E 3 ff / E
- 1 / .
E / E
F ' / ---Sc+8d 3
E B o Sh+Sc ) -—--8d/Sm g
= — E+S0+Sa f’r — —dSph 3
E | 1 | 1 1 | | 1 I 1 I 1 1 1 | 1 | I |Ir I 1 I | 1 1 I 1 I 1 I | 1 | 1 | i I 1 | 1 | 1 1 I |3

-22 —20 —-18 —-16

—-22 —20 —-18 —-16
M(R) — 5 log h

de Lapparent et al. (2003)

—-22 —20 —-18 —-16



Galaxy luminosity funct10n° spectral type dependence
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3.3 Evolution of galaxy luminosity function
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Galaxy luminosity function:
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4. Chemical Evolution of Galaxies

4.1 Stellar evolution

4.2 Chemical evolution of galaxies: general
framework

4.3 Evolutionary synthesis model of galaxies

4.4 Star formation history of spiral galaxies

4.5 Evolution of the total mass, grain size, and
chemical composition of dust



4.1 Stellar evolution



Stellar evolution: an important ingredient of galaxy evolution

We have seen that galaxies evolve with time in various
senses. Among others, the most prominent aspect of galaxy
evolution is that of stellar population and resulting change

of metallicity, appearing in their colors and spectral
features (lines, breaks, etc.).

\/

The key factor: stellar evolution




The Life of Stars: basics

The life of stars is determined by their initial mass.

Light stars live long, end with a moderate ejection of gas and

subsequent cooling.

Heavy stars live short, end with violent explosions and mass
ejections.



The Life of Stars: basics




Stellar evolution: the Hertzsprung-Russel (HR) diagram

The (theoretical) HR diagram
represents a relationship between ﬁ_
the effective temperature and
luminosity of stars.
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Stellar evolution: the Hertzsprung-Russel (HR) diagram

Timescales:

Main sequence lifetimes
1.0 M,.: 9.0x10° yr
22M,,:50%x10%yr
1I5M,,: 1.0 X107 yr

Giant branch lifetimes
1.0M,, :1.0X10° yr
22M,,,:2.8%X107 yr
1I5M,,: 1.5%X10%yr
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Life of stars and their nucleosynthesis

H He ,
H I_Ie € €
H H
Te 10K 103K 3xX103K 10°K 5X10°K
Birth H burning  He burning C-+O burning Si burning

(Main sequence) (Giant)

Stars produce heavy elements by the nuclear reaction, and
how far the reaction goes depends on the mass of stars.

‘ Lighter than the Sun >
‘ Heavier than the Sun >




Supply of metals to the interstellar space I: stellar wind




Supply of metals to the interstellar space I1: final stage of stars

The death of stars with mass <8M_  : planetary nebulae (PNe)

Stars with similar masses to the Sun run out the hydrogen
in the core, change their equilibrium structure and expand,
and become cool huge stars (red giant branch stars: RGBs).

After the RGB phase, these stars become unstable and
repeat expansion and contraction (thermal pulse
asymptotic giant branch stars: TPAGB). Because of
this pulsation, the outer layer of a star is expelled into
the interstellar space and forms a gas nebula, called
planetary nebula (PN). The nebulae expand into the
space and mix with the interstellar medium (ISM), and
provide heavy elements contained in the gas.



Planetary nebula

MS57 (Ring Nebula)




Planetary nebula

NGC6543 (Cat’s Eye Nebula)




Supply of metals to the interstellar space I1: final stage of stars

The death of stars with mass > 8M_ : Type II supernovae
(SNe II)

Heavy stars repeat expansion and contraction, change their
internal structure a few times depending on the mass, and finally
start the Si-burning which produces Fe. However, after this
process, they exhaust their energy source because Fe has the
highest binding energy per nucleon. The core loses energy by
neutrinos, which leads to its contraction. However, this process
leads to even more neutrino loss, and an inverse 3-decay related
process accelerates the contraction. Then, finally the core
contracts with a timescale of 10~ s and produces an outgoing
shock, leading a very energetic explosion (Type II supernova: SN
IT). The ejected gas from a star forms a nebula, called a
supernova remnant (SNR). This also provides the ISM with
heavy elements.



Heavy elements supplied by SN 11

Miyii  Msn® M, Mco ¢ He C O Z
120 81 81 59 9.8 0.88 35 42
85 62 62 38 8.1 0.72 23 27
60 47 28 25 6.0 0.70 14 17
40 38 17 14 4.2 0.55 0.8 10
25 25 9 7 3.5 0.40 2.4 4.4
20 19 7 5 2.1 0.30 1.3 2.9
15 15 5 3 1.6 0.20 0.46 1.5
12 12 4 2 1.4 0.10 0.15 0.8
9 9 3 2 1.0 0.06 0.004 0.3

5 5 | 1 0.45

3 3 0.09




Supernova Il remnant

M1 (Crab Nebula)




Supernova Il remnant

N132D (LMC SNR)

Blue: [O1]
Green: [OI11]
Red: [S1I]




Supply of metals to the interstellar space I1: final stage of stars

The death of binary stars : Type Ia supernova (SN Ia)

A significant fraction of stars are born as binaries.
The last stage of such stars are different from that of
single stars because of mass exchange between them.

Stars with M <8M_ , end as white dwarfs (WDs). If they
are single, such stars finally have a WD mass below the
mass limit above which there is no stable solution
(Chandrasekhar mass M_;; = 0.6M,,)-

However, WDs in a binary system can often accrete gas
from a close companion star. Then, it finally exceeds
M, and collapses, resulting in a runaway fusion
reaction: Type Ia supernova (SN Ia). Each SN Ia
produces Fe of 0.3-1.3 M, , i.e., SN Ia is the most
important source of iron in a galaxy.



Type Ia supernova: schematic picture of binary mass transfer

ETE sequence Roche lobe of
companion while dwarf

White
dwarf

b

d
b
# Mass-transfer "~
stream

Rochelobe _— Accretion
of companion disk




Type Ia supernova: binary evolution
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Heavy elements supplied by SN Ia

Species  Mass/My  [Xi/Xs6]*
24Mg .09 —1.1
28Si 16 —0.3
328 08 —0.4
OAT 02 —0.3
YCa 04 0.1
*4Fe 14 0.6
SFe 61 0.0
N1 06 0.4
Cr—Ni .86




Supernova Ia remnant

Tycho’s SNR
e
..,;,3 |

Chandra images
Silicon



Astronomical classification of supernovae

5 log f, + Constant

(a) SN 1987N (Ia), t ~ 1 week -
20 |— (b) SN 1987A (I}, T ~ 1 week

(c) SN 1687M {Ic), t ~ 1 week

(d) SN 1984L (Ib), t ~ 1 week

Hydrogen i a | | |

abSOl'ptiOIl lines 4000 8000 8000 10000
Rest Wavelength (A)

SN Ib, Ic, and II have the same physical origin, while Ia does not.
This is disturbing for understanding: it is because the
classification was made based on the existence of an H envelope.



4.2 Chemical evolution of galaxies: general
framework



Chemical evolution of galaxies

Mass ejection

(ism
Stellar winds
1 PNe
Supply of heavy

eiements

SNRs

Star formation

Heavy element production

Stellar evolution

-Star formation in
galaxies is affected
by the amount of
heavy elements
which galaxies ever
produced.

Heavy element production

I_<Mass cjection Stellar death >

Heavy element production

The history of the
amount of stars
formed in galaxies
is called the star
formation history

(SFH).




Initial mass function (IMF) of stars

A mass distribution function of stars in their birth is
referred to as the initial mass function (IMF).

Since the IMF determines the A ONC (HCO00)
ratio between massive and less
massive stars, it plays a crucial
role in chemical evolution of
galaxies.

M35

standard

W
T

log,,¢, (arbitrary)

IMF normalization:

jm(I)(m)dm =1

[4V]
I

(but often normalized with
number. )

(Kroupa 2002)' — 1



Chemical evolution model: basic equations

‘M = total mass (baryon)

M=M+M, 1M =mass in stars
M, =mass in gas
dM [ f =rate on infalling gas
dt =/ e 13 = rate on ¢jected gas
dM _p_g ;‘P = star formation rate
dt | E = gas ejection rate of all stars
dM




Chemical evolution model: basic equations

Total gas ejection rate of stars is expressed as

E@®) = [[m-w,]¥ ., ®(m)dm (1)
where "
m,: turnoff mass at time t = lowest mass of stars dying at time t
m—w,,: ejected mass
WY mm @ (M): birth rate at t-t,= death rate at time t
T, Mmain sequence lifetime for a star with mass m
Remnant mass: {wm =0.11m+0.45M, (m<6.8M,)

w, =1.5M (m=26.8M,) (2)

N.B. Here remnant means not only the final stage of stars but
also normal long-lived stars.



Chemical evolution model: basic equations

Evolution of the metal abundance Z is written as
d(ZM g)
dt

=-ZV+E +Z, - f-Ze 3)
where

E.: ejection rate of metal(s) from stars (main sequence stars,
Wolf-Rayet stars, SNe, etc.)

Z.: infalling metals per time

ZM: mass of metal(s) in the gas.



Chemical evolution model: basic equations

Ejection rate of metals reads

where "

(M =Wy, )Z 1y : Mass of metal(s) which was locked in a star
of mass m at time t - (M) and is now ejected at time {,

mp,,: new metal(s) produced by a star of mass m with
originally formed from gas with metallicity Z.

N.B. Ansatz in eqs.(3) and (4): instantaneous mixing of
produced metal(s) with the ISM.



Chemical evolution model: basic equations

Returned mass per mass of stars formed is
R= j(m w_YD(m)dm (5)

This is independent of star formation rate, thus only valid for
a single generation of stars.

Mass of produced metal(s) per remaining stellar mass
(including stellar remnant) is called yield. This is expressed as

y=——0 j mp.,, ®(m)dm (6)



Chemical evolution model: instantaneous recycling

As a first order approximation, the instantaneous recycling
approximation is often adopted:

1. massive stars die immediately after their birth and less
massive stars live forever,

2. produced elements are instantaneously mixed with the
ISM, is used.

N.B. This is only valid if the SFR is almost constant over a
timescale of 107 yr for lighter elements like O, C, N, Mg,
etc.(SN II origin), and of 103 yr for heavier elements like
Fe (SN Ia origin).



Chemical evolution model: instantaneous recycling

If the instantaneous recycling applies, using R and y and
assuming the IMF is constant with time (meaning R = const.),
we obtain

E(t)=RY(¢) (7)
E,(6)=RZ(OY () +(1-R)y()*F(2) 8)
Inserting eq.(8) into eq.(4), we have

d(ZMg)— ZY+RZ(OYD)+(1-R)yy(HY()+Z v/
E YO +(A-R)yOY ) +Z,- f—Ze ©)

thus
d(ZM g)
dt

=(-R(-Z+y)¥+Z, f-Ze (10)



Chemical evolution model: instantaneous recycling

As for stellar mass, with eq.(7),
M.

- =(1-R¥() (11)
and for gas mass,
e = (- R¥O+ [ (12)
Then, we have
M 1-RyyO¥O+(Z,-2)f (13)

£ dt

These equations are the framework under the instantaneous
recycling.



Chemical evolution model: analytic solution for a simple case
Closed-box model

Assume we have a closed system containing only gas with zero
metallicity (not essential) and no stars.

Since f=e =0, My(t=0) =M, M (t=0) =0,

M, _1-rye (14)
dt
dZ
M, =(-Ry@O¥() (15)
which lead
1 dM, 1 16
M, dZ y (16)
or equivalently
Z(1)
M (t) dz Z
lIlM £ = S = 17
s ! y 7 17




Chemical evolution model: analytic solution for a simple case

The metallicity of the gas is
M, (t=0)

M (2)

Z(H)=7n (18)

N.B., Z(t) depends only on M (t)/M, thus not explicitly on t.

For a simple estimate, we can use

Z M
7 ™ (19)

O g




Chemical evolution model: analytic solution for a simple case

The metallicity of stars can also be obtained as follows.

Under a closed-box assumption, the stars and the gas

altogether must contain all elements ever produced. Hence
¢

ZM,+ZM, = | [mp,,¥(¢Y®(m)dmdt' = | (1- R)y¥dt = (1- R) y¥1
-~ 00

1 ) 1 4

'

3

(20)

—

: average metailicity of stars (without metais in remnant)
: metallicity of gas

: mass of all metals ever produced

= W N

: average values with assumption: y¥ =y¥



Chemical evolution model: analytic solution for a simple case

Thus, we have
ZM +ZM, =(1-R)y'¥t (21)
Integrating eq.(11) leads to
M, =(1-R)¥t (22)
Combining the above, we have
LM =yM —IM, (23)
Finally, we obtain an important result:
M, <M, = Z =y (24)

i.e., the average stellar metallicity cannot exceed the average
yield.



4.3 Evolutionary synthesis model of galaxies



Stellar spectra and single (simple) stellar population (SSP)

Stars have different spectra depending on their effective
temperature (often referred to as spectral type) and
metallicity.

Suppose a population of stars which were born at the same
moment and with a certain IMF and metallicity. Then, the
total spectrum of this population at age t is expressed as a
IMF-weighted sum of the spectra of each stellar mass (<~
spectral type) with age t after their birth.

This hypothetical population is called a single stellar
population (SSP), and play a fundamental role in
theoretical modeling of galaxy spectra. The SSPs vary as a
function of age, metallicity, and the adopted IMF.



Stellar spectra 300 400 500 600 700
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Single stellar population (SSP)
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Evolutionary synthesis of galaxy spectra

Synthesizing isochrones can convolve with arbitrary star
formation history (Green’s function):

F, (t): ‘ELP(t _T)fxl,Z(t—r)(ThT (25)

f,.zy(D: an SSP of age t and metallicity Z(t’)
F,(t): the spectrum of a population with arbitrary SFR ¥(t).

N.B. this assumes time-invariant IMF.
Commonly used is exponentially decaying SFR:

W(t) =1 exp (—t/7) (26)



Evolutionary synthesis of galaxy spectra

The effect of star formation history
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Evolutionary synthesis of galaxy spectra

The effect of star formation history
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Evolutionary synthesis of galaxy spectra

-1

log (Fo/LoA "My )

A(log F,)

Application to ellipticals
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Best-fitting age model and
composite elliptical spectrum

Fairly good fit over entire
spectral range

Note UV-rising branch,
highlighting importance of
accurate AGB modeling
Authors admit that these are
large-aperture spectra, so
metallicity will be roughly
solar



Evolutionary synthesis of galaxy spectra

Application to irregulars

NGC 4449

I | T TT [—rj

CONSTANT STAR FORMATION
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Evolutionary synthesis of galaxy spectra

Application to spirals
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4.4 Star formation history of spiral galaxies
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Observed star formation histories
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Star formation history in chemical evolution

The star formation history (SFH) plays a central role to
control the chemical evolution. Though in the simplest model,
the SFH did not appear explicitly, generally we have to put a
certain physical model to specify the SFH.

In reality, this part is complicated and still poorly understood,
we often adopt the following empirical law, referred to as the
Schmidt law (Schmidt 1959) or its variant:

SFR oc p" n=1-2

~—~
[\
~J
N’

N.B. In the observational side, it is expressed as a function of
surface gas density, and in the chemical evolution modeling, yet
a different form is often used.



Application of Schmidt law to chemical evolution

Applying the Schmidt law to the chemical evolution, we
can reproduce an exponential-type SFH in a self-consistent
manner (not by hand).

1]
Bl m—
Be
8d

Galawy age (in Gyr)

http://model.galev.org/



4.5 Evolution of the total mass, grain size, and
composition of dust (Asano Model)



4.5.1 Chemical evolution of galaxies: metal and dust

The produced heavy elements are not always in a gas state:
indeed, more than a half of the heavy elements form tiny
solid grains, called dust. Dust grains are usually suspended
within the ISM in galaxies.

Star formation activity is closely related to heavy element
production. This therefore mean that the star formation is
also connected to the production of dust.

Hence, intense star formation always accompanies active dust
production. On the other hand, dust grains also accelerate the
efficiency of star formation. The interplay between the star
formation and dust is very complex and nonlinear.



Chemical evolution of galaxies: metal and dust

Star formation

Heavy element production

Mass ejection

[ ISM Stellar evolution
Stellar winds
1 PNe
Supply of heavy Heavy element production
elements

I_l—l—<Mass ejection Stellar death >

SNRs Heavy element production




Chemical evolution of galaxies: metal and dust

Dust production
Star formation
Protoplanetary

disk

Heavy element production

Mass ejection Dust production

[ ISM Stellar evolution
Stellar winds
1 PNe Cool star atmogphere
Supply of heavy Heavy element production | PNe
elements *
Mass ejection i Sl Dust production
SNRs Heavy element production SNRs

@ Blast wave by SNe

Dust destruction



4.5.2 Role of dust in galaxies

What are dust grains?

Dust grains are
*formed by condensation of heavy elements.

@ Heavy ‘ Dust grain
elements

® o
Heavy elements are supplied only by stars.

*tightly connected to galaxy evolution

There are many important physical quantities
affected by dust.



Role of dust for the first star formation

Surface of dust grains

molecular molecular
formation cooling

These processes depend strongly on the amount and size
distribution of dust grains.




Role of dust for the first star formation

Surface of dust grains

redshift
9.5 9 7 5
g {a) [
S 0.100f w/ dust grains
~
=
o
=)
= 0.010F
3 w/o dust grains
; .
0.001
1[}? IDE
age [yr]

Hirashita & Ferrara (2002)

Dust grains drive the star formation.



Spectral energy distribution (SED)

Dust extinction Dust Re-emission
T Dust T T |
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Extinction curve

Wavelength dependence of extinction by dust

~ Average Galactic Extinction Curves

w
|
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4.5.3 Dust and matter circulation in a galaxy

Galaxy
atoms, destruction grain
molecules (SN shocks growth

coagulation ©

astration



Dust supply

AGB stars

Log-normal distribution
Large size grains are produced
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N
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Dust destruction and grain growth

Dust destruction by SN shocks

Smaller grains are mainly
destroyed by SN shocks.

Grain size [cm]
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Shattering and coagulation (driven by ISM turbulence)

Shattering

Coagulation

Smaller grains are produced

Larger grains are produced

by larger grains
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4.5.4 Evolution of the Total Dust Amount

Evolution of the total stellar mass, M.. , ISM mass, Mgy
metal mass, M,, dust mass, M, in a galaxy

df\?t(t) — SFR(t) — R(t),
dMIdS?[(t) — _SFR({) + R(t),
AMy(t
di() = —Z()SFR() + Rz(t) + Y2(1).
oy My Ma(1-9)
T = ~DOSFR() +Ya(t) - — Tacc
Z(t) = My /Mg Vism (t)
0 = My/My SER(1) = ="
D = My / Miswm i




4.5.4 Evolution of the Total Dust Amount

Evolution of the total stellar mass, M.. , ISM mass, Mgy
metal mass, M,, dust mass, M, in a galaxy

AN, (t)

dt
dMisn (1)

dt
dMz(t)

it
AM, (1)

dt

Injection/ejection from stars

"Destruction by SN shocks
* Grain growth in the ISM



Dust-to-gas mass ratio
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Critical metallicity for grain growth




Critical metallicity for grain growth
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Evolutionary tracks of the dust-to-gas mass ratio are unified
by using Z/Z ... Metallicity tuned out to be fundamental for
dust evolution (Asano et al. 2013a).




Application to the observed data

Herschel observation

Gas,/Dust mass ratios
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4.5.5 Evolution of Dust Grain Size Distribution

Asano et al. (2013b)

* Closed-box model

(total baryon mass is a constant)

" Two-phase ISM (WNM and CNM)
*Schmidt law : SFR(t) = Mgy (D)/Tsp

*Dust formation by SNe Il and AGB stars

*Dust reduction through the astration

"Dust destruction by SN shocks in the ISM

* Grain growth in the CNM

* Grain-grain collisions (shattering and coagulation)
in the ISM (mass-preserving processes)




4.5.5 Evolution of Dust Grain Size Distribution

Asano et al. (2013b)

* Closed-box model
(total baryon mass is a constant) '
- Two-phase ISM (WNM and CNM) | SFH!

A
*Schmidt law : SFR() = M,o()/755>"

This determines the

= To be improved.

*Dust formation by SNe Il and AGB stars

*Dust reduction through the astration

"Dust destruction by SN shocks in the ISM

* Grain growth in the CNM

* Grain-grain collisions (shattering and coagulation)
in the ISM (mass-preserving processes)




Formulation of the grain-size dependent evolution of dust mass

M, (a, t) = m(a)f(a, t)da : dust mass with a grain radius [a, a+da]
at a galactic age t

dMa(a,t) Ma(a,t)
dt T Mism (t) SFR(t)+Y,(a,1) Stellar effects

Destruction

Mswept N | - / /
- ﬂf{sr\,{(t)qSN(ﬂ [:'“frd(‘L t) —m(a) '/.5 {(a,a ) f(a ,t)dﬂ] by SN shocks

Olm(a) fm(m,t)] }

+7NCeNM [d?ﬂ 5 Grain growth
AMa(a,t) dMg(a,t

+TWNM dlgt ) + NCNM dl(t ' )]

¢ 1 shat, WNM ¢ shat,CNM

AMg(a,t) R dMq(a,t)

dt dt
L 4 coag, WNM coag,CNM

Shattering

Coagulation

+TTWNM




Evolution of the grain size distribution

T’"'NH = 0+5, T’ENH = 0+5
Tep = DGyr

P et
QL
o
r—t
=
=
{
3
i
o
4
St
Ry
-+

o

t/10Myr= 0

10°* 10 10 107!
grain size [um]




4.5.6 Evolution of Extinction Curve

Extinction = absorption + scattering by dust grains

Extinction in unit of magnitude at a wavelength: A,

A, =1.086 X7,

00 A: wavelength

Ty, j = f ma’ Qext, j(A, a)Cfj(a)da a:radius of a grain
0 J : grain species

Optical constant:

graphite and astronomical silicate (Mg, Fe,, SiO, )

Draine & Lee (1984)
Grain size distribution:

Evolution model of grain size distribution

Asano et al. (2013b)



Evolution of the extinction curve in galaxies

Ten = BGyr




Part I1I;: Formation of
Structures and Galaxies



5. Structure Formation I

5.1 Structure formation: fundamentals
5.2 Linear theory



5.2 Structure formation: fundamentals



From structure formation to galaxy formation

Input of the Harrison-Zel’dovich spectrum
Deformation of the power-law form
Initial fluctuation
Gravitational instability
Growth of inhomogeneity (dark matter)
Linear growth: large-scale structure
Nonlinear growth: clusters, galaxies
Dark halo formation

Physics of baryons

v Star formation and galaxy formation



Characterization of fluctuation

Density fluctuation: 0=
Dispersion: 6% = (8%

Fourier component:  §; = |8 = / S(x)e'**d3x
Power spectrum: P(k) = (|8

Higher-order power spectra (bispectrum < 3-point

correlation function; trispectrum < 4-point correlation
function) are also defined.

In general, a set of infinite number of moments (or their

(14)

(15)
(16)

(17)

Fourier counterparts) are needed to specify the properties

of a stochastic field.



simulation in a finner grid

Gaussian random field

Gaussian random field is a
stochastic field whose
distribution is described by
Gaussian and its Fourier
phases have no correlation.

£(8)dd =

(OxOpr) o< Op(k—K')

All the stochastic properties of a field is uniquely characterized
by the power spectrum P(Kk) for Gaussian random fields.

Observationally, density fluctuation in the Universe can
be regarded as (almost) Gaussian.




Initial fluctuation: Harrison-Zel’dovich spectrum

A power-law form P(K) oc k" for the initial power spectrum
has been propounded from heuristic requirements to the
structure formation in the Universe. The case with n=1 is

especially called Harrison-Zel’dovich spectrum (Harrison
1970; Zel’dovich 1972).

log P(K)

log (k)



Inflation

Inflation: exponential expansion of the Universe before the
Big Bang fireball

It has appeared on the scene
of cosmology as a theory to
solve the flatness and horizon
problem, as well as to provide
initial fluctuation of the
cosmic structure (Guth 1981;

Catn 1‘\01\
SAato 1501).

Inflation produces a (nearly)
Gaussian fluctuation with a
power spectrum of P(k) o< k.

N.B. Not exact in a modern
framework.

(Guth & Kaiser 2005)



Deformation of the Harrison-Zel’dovich spectrum

E
log(t) = Z
og(t) ==
AL £ .
7= 1 ....................................................................................................................
: [J
= Subhorizon
z=1200 §§ ...................... recombination; production of CMB
=
2= 4 X 103fm radiatdon.equality................. < P(K) )
= 2 X
S = .
z g Superhorizon
]
7 >>1010 — Y end.of inflation.........eeeeeeeeeeeee < ‘P(k): )
=
=
= Planck time —

log(rcomov)

Growth rate of a density perturbation depends on the epoch (i.e.
what component dominates global expansion dynamics at that
time), and whether a perturbation is super- or subhorizon.



Deformation of the initial spectrum

Radiation dominant epoch: when the initial power
spectrum enters the horizon (L = ct)(the horizon expands
to the scale of fluctuation), fluctuations can grow little
because photons sweep out all the fluctuations of dark
matter (Mészaros effect; stagspansion).

Since fluctuations larger than the horizon can grow, the
power spectrum bents at the horizon scale of the epoch
and deviates from a single power-law. The scale of the
bent is

kit (feq) = a(teq)H (teq) = 0.102Q,/1 [Mpc] ™ (18)



Caution to the superhorizon-scale fluctuation

N.B. Fluctuations larger than the horizon should be treated
fully relativistically, but because of the large degree of
freedom of coordinate transformation in general relativity,
the form of fluctuation cannot be determined uniquely: for
example, we can always take a coordinate system in which
fluctuations vanish completely.

It is popular now to use the gauge-invariant formulation
(Bardeen 1980; Kodama & Sasaki 1984).



Transfer function

A power spectrum at a certain time t can be described
as the initial power spectrum X deformation. This
deformation part is called the transfer function.

In the case of CDM, since only the stagspansion is
the cause of the deformation, then we can write as

N 1 k < kn(teq)
I'k) {k—2 k> ki (teq) (19)

Hence, the power spectrum is expressed as

k k < kn(teq)

20
k3 k> ki (teq) (20)

P(k) o< kT*(k) o< {



Transfer functions for various kind of matter

1
T Illlllr‘

0.1

| Ty |
T T T TTIT]

(.01

T T TTT] T T T T TTT] T T T T TT13
isc baryons ]
- T
- 4
- \ - .
< b Fon f e~ — — — — ]
~ B
- i1 i ,'tf‘-r'::lr‘_\'_‘__.. =
- L —
- )
-
-
- —
- -
- .
f —
baryons m ﬂ HDM MDM ~ CDM |
Lol I Ll Rl L1 11117y




Typical power spectrum with CDM and baryon

Peak o<Q

P(k) oc k-3

107
k /h Mpc

10™




The cosmic microwave background radiation (CMB)

WMAP 5 year data

http://map.gsfc.nasa.gov/m_mm.html




The cosmic microwave background radiation (CMB)

Planck first data

http://www.rssd.esa.int/index.php?project=Planck



The cosmic microwave background radiation (CMB)

e T=2.725 %0.002 K.
 The most perfect blackbody in the Universe.

* Rayleigh-Jeans tail at the cm regime, and the peak
locates around 2 mm.

e Fluctuation dT/T~ 1075,

* This fluctuation is the line-of-sight integrated initial
fluctuations which, in principle, contain the full
information of the initial power spectrum when the
structures have started to grow (if the fluctuations are
adiabatic).

 However, because of numerous physical processes, the
power spectrum is somewhat deformed especially at
higher k (small scale) regime.



Recombination

The Big-Bang fireball: plasma

Free electrons

Photons

Photons cannot penetrate plasma because of the Thomson
scattering by free electrons.




Recombination

380 Myr after the birth of the Universe, matter turns
from plasma into atoms.

o B Bound electrons
\ré, \Ulr\‘ ;,}:--':.,, i o

N

Neutral atoms do not scatter light and photons can go
straight in the Universe.




The last scattering surface

When the matter turns neutral (neutralization), the
Universe becomes transparent against photons. The
photons scattered in the last moment of plasma era (the
last scattering surface: LSS) are observed as the CMB.

Plasma Neutral gas
RN SR CC VI ©
N \ « - @
© p
—> | ®
NN «



Energy spectrum of the CMB

Wavelength [mm]

2 1 0.67 0.5
T 1 1 1

400 -
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CMB power spectrum: spherical harmonics

The CMB fluctuations are usually expressed in terms of
spherical harmonics:

o0

L 0.H =Y 0.9 @21)

with the angular power spectrum being then defined as
follows:

CE

1 :
T 2041 ;aﬂmaﬁm ) <‘aﬂm‘2> (22)

To have an intuitive idea about {, it is useful to write

180

b= 0 [deg] (23)




CMB power spectrum: origins of fluctuations
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5.3 Linear theory



Schematic view of the evolution of the CDM power spectrum

t A
7 = 1 TOday
2/3
Oocaoct CMB

ooca’ ot Oclna

End of inflation

Comovin

k o
N

k o
\P(K) ]
4
\P(K) ]
/?
\P(K) .
/:
\P(k)

k

Small K fluctuations
grow nonlinearly.

Baryon acoustic
oscillation appears.

Fluctuations in all
scales grow in matter-
dominated era.

Since fluctuations smaller
than the horizon cannot
grow, P(K) is deformed.

Fluctuation with the
Harrison-Zel’dovich
spectrum is generated.



Linear regime

Small K fluctuations
grow nonlinearly.

Baryon acoustic
oscillation appears.

S oca’ ot

End of inflation

Comovin

Fluctuations in all
scales grow in matter-
dominated era.

Since fluctuations smaller
than the horizon cannot
grow, P(K) is deformed.

Fluctuation with the
Harrison-Zel’dovich
spectrum is generated.




Linear theory: Jeans mass of the cosmic structures

We first adopt the Newtonian fluid approximation, which is
valid for slowly moving matter in a range much smaller than
the horizon. Under this assumption, we have

%’t’w.(pv):o (27)
@+(\7-v)\7:—@—v¢ (28)
ot Jo,

Vi =4nGp (29)

Equations (1) — (3) are written in physical coordinates.



Linear theory: Jeans mass of the cosmic structures

We introduce comoving coordinates so that we treat structure
formation in the expanding universe.

F = a(t)x (30)
V:i—::?:ai+a>?: H (t)aX + ax
= HF +0 (31)

Here U is a peculiar velocity.

Further, we obtain for the differential operators:

(ﬁj :(ﬁj _8gv, (32)
ot). \ot), a
1
V, =-V, (33)
a

Hereafter, we drop the subscript X.



Linear theory: Jeans mass of the cosmic structures

By changing the coordinates from physical to comoving, we
have the continuity equation [eq. (27)]

op 1 _
—+3Hp+—V- =0 34
—+3Hp+—V(pt) (34)
and Euler equation [eq. (28)]
a, Ha+i(u.v)uz—ivp—lv¢—ax (35)
ot a ap a
By defining a new potential
O = ¢ +% (36)
we have
Y g+ L@ v vp-Llve (37)

ot a ap a



Derivation of eq. (34)

6—'0—EX -Vp+— 1 Vp-V+— 1 pV
ot a a

a—'O—EX Vp—|—1Vp (ax+ax)+ 1 PV - (ax+ax)
ot a a

a—'O—Ex Vp+ax Vp+x Vpo+— pV X+ pV - X
ot a a

=L +%-Vp 9 & -+ pV X
C \\3

:Z—f+3Hp+V-(p?)

a'0+3H,0+1

S V- (o)



Derivation of eq. (35)

oNoa .. . 1. _\. 1 1
———(X-VN+—(V-VN=——-Vp-——V
~ 5 XYW+ (- V) PRV

= <lexra)- S0 Vvt [l o) v e k)

:%(az)%(ax*)-g(*-v)(amax*)+§(i-V)(aX’+a?)+(?-v)(af+a*)
— g(af()+5—ﬁ+ (Sk’-vXam i)

ot ot

Since this is not d/dt, it does

:a)*(Jr%er H(U°V)>_(’+é(l]-V)U not make terms with X.

_ax+ M Ha+l(u-v)a
ot a



Linear theory: Jeans mass of the cosmic structures

The Poisson equation [eq. (29)] leads
V¢ =4sGa’p
From the Friedmann equation [eq. (5)], we have

2

3ad=(V-X)ad = [Vz X?jaa' = —42Gp

Then, we obtain
VD =47Ga’*(p-p)

The solution of this equation is

(D——GaZJ-CPX' p—p
IR

(38)

(39)

(40)

(41)



Linear theory: Jeans mass of the cosmic structures

Consider a small fluctuation from the background universe:
0=0,V®=0,Vp=0

We introduce fluctuations from the homogeneous
background as

57,1y = 2% PO (13)
p(t)
HX1) = p(x,t) - p) (43)

Thus, from eq. (40) we have
V'O =42Ga’pd (44)



Linear theory: Jeans mass of the cosmic structures

The continuity equation [eq. (34)] leads
0 r— _ P o
a[p(1+5)]+3Hp(1+5)+—v.[(1+5)u]:o (45)
a
Here we should note that

ap 0 s= _
L +3Hp =0 ( - EV0) oj (46)

From eqs. (45) and (46)

@+3Hﬁ5+§v-[(l+5)ﬁ]

5-1—,0[;5 gv.[(1+5)u]:0 (47)
A

0




Linear theory: Jeans mass of the cosmic structures

Thus, the continuity equation [eq. (34)] becomes

o5 1 1
E+§V'[(1+5)“]‘0 (48)

and the Euler equation [eq. (36)]

a—U+HU+1(U-v)a:— _V(ép) 1ve (49)
ot a ap(l+5) a

Equations (44), (48), and (49) are the startpoint to derive the
solutions which describe the linear growth of fluctuations.



Linear theory: Jeans mass of the cosmic structures

Here, we neglect terms including multiplications of 0, op,
and U since they are small (linearization).

Then the continuity equation [eq. (34)] and the Euler equation
now read

@4— : V-u=0 (50)
ot a
a—u+Hu+1VCD+V(§_p)=O (51)
ot a ap
Then, manipulating eqs. (50) and (51) gives
®, 0’0 1 ou) a
eq. (50 v 2y.a=0 (32)
at[q( )] ot a( 8t) a

V-leq.(51)]=V- 8_u+ HV - u+1V CI)+LV (§p)=0 (53)
ot a ap



Linear theory: Jeans mass of the cosmic structures

Performing an algebra eq. (52) — eq. (51)/a gives

2 : 2
90 28 (v.0)-4rGp5 - z(fp)
ot a a’p

o) 06 _ . V*p)
= +2H ——| 42Gpo + =0 54

ot ot { P 54

Consider the sound velocity of the fluid
C el
i (55)
Vo :

Here S is the entropy. Suppose that the entropy fluctuation is
small, we have

P =C,po (56)



Linear theory: Jeans mass of the cosmic structures

Since the basic equations are linear, we can deal with Fourier
components for each k. Consider

5(X)=> 56" (57)
k
Then, , o
0% 421 90 _| 4rGp5, - S PO
ot ot a’p
8°5, 05, ¢k
= +2H —* 1| 42Gp —=—— |5, =0 58)
ot ot { Py 1" (




Linear theory: Jeans mass of the cosmic structures
The third term in || ]| controls the evolution of fluctuation.

1.

<0

Fluctuations oscillate and decay. This happens when C is
large. This also happens when K is large (small scale)
because the fluctuation does not contain enough mass to
contract gravitationally.

>0

Fluctuations grow.



Linear theory: Jeans mass of the cosmic structures
Here we define k| so that
c.’k,’

a2

= 472Gp (59)

then we can also define the Jeans length A;:

27ma T
Ay="=c, [ 60

Fluctuation smaller than kJ decay, while ones larger than XJ
can grow by gravitational instability.

A _( 4,

M, = ?P(zj (61)

is referred to as the Jeans mass.



Linear theory: superhorizon-scale (DM or baryons)

deeper into the discussion.

Fully relativistic treatment is required. Here we do not go
MD

log t

The mean density evolves as

poca
hence fluctuations grow as
\iﬁﬂaﬁan\ 5k oC a
log(rcomov) ’

log t

e

The mean density evolves as
CMB

poca’
hence fluctuations grow as
\ O, € a’
log(rcomov) ’




Linear theory: growth of fluctuations for DM I

The evolution of the Universe is governed by the energy
density through eqs. (4) and (5). In the early Universe,
radiation dominates the energy density (radiation-dominated:
RD), while later matter dominates (matter-dominated: MD).

Consider the evolution of fluctuations of DM. DM is thought
to be pressureless. Then, eq. (54) or (58) becomes (since they
are linear, real or Fourier space treatment does not differ)

0’8 00 _
—5 +2H —-—41Gp5 =0 (62)
In the Einstein-de Sitter universe, a oc t?2- Then,
0’6 405 2

5=0 (63)

_|_ —_
ot* 3t ot 3t




Linear theory: growth of fluctuations for DM I
Assume a solution with the form

§=A.(¥)D, () +A (X)D_() (64)
Then, eq. (63) is solved with a general solution
5=A Ot + A (x)t™ (65)

The second term is a decaying mode and can be neglected at
larger t. Then,

S=A (Xt ca (66)
Defining the growth factor D(t), eq. (66) is also expressed as
D(t) o a(t) oc t*? (67)



Linear theory: growth of fluctuations for DM II (stagspansion)

As outlined above, during the RD era, the DM fluctuations are
suppressed within the horizon size (stagspansion).

0%3,, 00y

2+ 2H M- 4765, =0 (68)
872G
H* == Py +Px) (69)

Here subscript M and R denotes matter and radiation. We also

define =
c=Bu_ 2 (70)
IOR aeq

(8,4 scale factor at the matter-radiation equality). Then we

have
@25M 2434 00y, 30y,

00 20(+0) o 2£(+0)

(71)



Linear theory: growth of fluctuations for DM II (stagspansion)
By assuming

d 25M
=0 72
dé/2 ( )
we find a solution of the form
Oy o 1+ % 4 (73)
MD: C>>1
Oy, < a (74)
RD: (<<1
Oy € constant (75)

(more precisely, 5,, °<In a).

Thus, we could see quantitatively the effect of stagspansion.



Linear theory: subhorizon-scale (DM, radiation-dominated)

Jeans analysis can be applied. Dark matter is pressureless,
but during the period in which DM particles couple with
photons, radiation pressure works as the effective pressure
of DM. Then subhorizon-size fluctuations cannot grow.

logt

The mean density evolves as
poca’
Fluctuations grow as
o, clna




Linear theory: subhorizon-scale (DM, matter-dominated)

Dark hatter becomes decoupled from radiation, and
subhorizon-size fluctuations start to grow. At early epoch,
the Universe can be approximated as Einstein-de Sitter.

The mean density evolves as
poca’, act?

The Jeans equation has a general

solution:
5k — @ @
Growing mode Decaying mode

Since the decaying mode
becomes negligible along with the
evolution, we have

§koca



Linear theory: growth of fluctuations for baryons
For baryon fluctuations, gravitational potentials are made by

DM o) 00
B +2H —2—-4sGp,, 5, =0 (76)
ot’ ot Puu .
where subscript B denotes baryons. If we define 7 =—-,
a'I'GC
Oy €1 (77)
Then we have
p d [ 5pd8, ) 3 S (78)
7 dr Ji dr 5 Om

The solution is

S5, = (1 ——j5M (79)



Linear theory: growth of fluctuations for baryons
This solution means that

ara, <on=1 : 0 ~0

dec

(80)
a>>adc>n>>1 + 05 =0y

This means that just after the decoupling, there is no
fluctuation in baryons, but later (n >> 1), they have the same
fluctuation as DM. This is called catch-up.



Linear theory: baryon acoustic oscillation

Before decoupling, radiation pressure from the photons
resists the gravitational compression of the baryon fluid into
potential wells and sets up acoustic oscillations in the fluid

Photon
Pressure

Springs represent photon
pressure and balls represent

the effective mass of the fluid.

Infall Potential

Well

The shorter the wavelength of the potential fiuctuation, the
faster the fluid oscillates such that at last scattering the
phase of the oscillation reached scales with the wavelength.
Since compressed regions (maxima) represent hot regions
and expanding regions (minima) cold regions, there will be
a harmonic series of peaks in wavelength associated with
the acoustic oscillations.



Linear theory: baryon acoustic oscillation

Multipole moment [
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The strongest and the most important structures in the CMB
spectrum result from the acoustic oscillation.



Linear theory: Silk damping (diffusion damping)

In reality, the coupling between baryons (electrons) and
photons is imperfect since the photons possess a mean
free path to Compton scattering.

N=TI_."|?L{_'

SNV A

> * »

As the photons random walk through the baryons, hot
and cold regions are mixed. Fluctuations damp nearly
exponentially as the diffusion length overtakes the
wavelength. This is called Silk damping.




Linear theory: Silk damping (diffusion damping)

At last scattering, the ionization fraction decreases due to
recombination, thus increasing the mean free path of the
photons. The effective diffusion scale becomes the thickness
of the last scattering surface providing a cut off in the

anlSOtrOpy Spectrum. 1 2 I T T TTTT | I T TTTI || I I T TTTTI | iln||r_
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Linear theory: summary of the growth of baryon perturbations

log t

DM: Socaoct®’
Bar: falls to DM potential DM: S oc g oc t2/3
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Linear theory: schematic summary of fluctuation growth
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6. Structure Formation 11

6.1 Nonlinear theory: Press-Schechter formalism
6.2 Bias



6.1 Nonlinear theory: Press-Schechter formalism



Spherical collapse model: concept

In comoving coordinates a sphere, centered on a local
overdensity shrinks in time; Hubble expansion is getting
retarded by the overdensity. At some point, the sphere’s

expansion stops (turn-around), and the sphere starts to
collapse.

Hubble expansion

\

local overdensity

Time




Spherical collapse model: concept

Lme

typical region

GE}@

overdense region

GE}C}l

Physical coordinate




Spherical collapse model

Consider the evolution of a spherical overdensity region as

a simple model of the nonlinear evolution of fluctuation.
(Tomita 1969; Gunn & Gott 1972).

d?R GM dR 2GM
_ ¥ |:> Y ==" 1 oF
dr? R? ( dr ) R

“Energy” E <0: bounded

(R =C?(1—cos9)
< C’
= 0 —sin®
\t \/GM( ) S

C: integration constant,
corresponding to the size of the shell.

This curve is called “cycloid”. T
t/b

N.B. “Energy” E > 0: unbounded. Corresponding to voids.




Spherical collapse model

Densities of overdense and average regions are

iy amr3 " 1
P= 3 P = 6nGs?
M2 i
S(t)ng t _1:2(9 sin0)
: 2R3 2 (1 —cosB)3

0= 1. expansion = contraction (turn-around)
nC>

= 2 lturn = —F——
R[urn 2C t GM
0 = 27 collapse (R = 0)




Spherical collapse model

In reality, R = 0 is not established, but the overdense
region becomes an object with R, , via some mechanism
like the violent relaxation. Suppose a mass M, then from
the conservation of energy, we have

GM>  1GM>
Rtum B 2 Rcoll
hence Reo = I%
M
> Bur= . - 1=182-1=177 1)




Spherical collapse model

Correspondence with a linear regime

At early phase, the growth is the same as the linear
srowth. Expanding with 0, we have

(5= =02+ 0(6%)
20 > 8ot

< C’ 3 5
= 0° + O(0
. 6vGM ( )
2
3 (6V/GM \°
Let it 3, _
etit O, oL 20( - t)

Since both the nonlinear 6 of spherical collapse and linear 6,
are monotonic functions of t, we can estimate the value of
from o, if we have a relation between 6 and 5, .
2
3(12m)3
OL (Zcoll) = 12m)

20
Thus, we regard a region with 6 = 1.69 as a collapsed object.

~ 1.69 (2)




Spherical collapse model

perturbation

virial
equilibrium




Spherical collapse model

Above discussion was based on the Einstein-de Sitter
Universe. In the case of the flat A-dominated

Universe, 6; becomes as follows (Nakamura & Suto
1997).

QAH g Ry 1

w —1
G M vIr Qvir

-Qvir =Q (tvir) X

’3
Ruum \~ 2wy,
Seoll = (Rt“f”“) ";"“‘ — 1 ~ 187%(1 +0.04093uw:%>%) — 1
VIr

1
3 /1 11 oweir\3 (X
=2F (=l ——wy, (1+5)~1
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Press-Schechter (PS) formalism

Press & Schechter (1974)

Linear growth solution of density fluctuation+
extrapolation to the nonlinear regime through a spherical
collapse model = An analytic model of halo formation

Let the number density of objects whose mass is between
M and M+dM be n(M)dM. Then, this n(M) is called the
mass function. PS formalism gives an analytic solution of
n(M).

_4TRS _

M_3p

The smoothed (averaged) overdensity in a sphere whose
radius R corresponding to the mass M is called a
fluctuation o), of mass scale M.




Press-Schechter (PS) formalism

Original fluctuation o: Gaussian

= Smoothed fluctuation o0,,: Gaussian
1 .7
e 20248 3)
/216 (M)? .
(o(M)?2: variance of dM)

P(8y)dSy =

At a certain point, if the linear 6,, exceeds the threshold
value o, a collapsed object with mass M is formed. We set
O, = 0., = 1.69 as the spherical collapse model.

N.B. Recently, a number of theoretical studies adopt more
complicated form for o, reflecting more realistic physical
conditions.



Press-Schechter (PS) formalism

The spatial fraction of the regions with 6 > 0, is
§2

1 S '
(>6 [ P(SM dSM— \/2EG(M)2 /SC e 20M)~ddyy
- [, el @
21 ) i

The amount of matter involved in an object with mass > M
per unit volume is pP(> o.)(M)

dP(> &)

dM
dM

PP(> 0c)(M+dM) —pP(> 0. )(M)=p

— n(M)MdM (5)



Press-Schechter (PS) formalism
The discussion above ignored the possibility that a once
collapsed object would be involved in a larger object
(cloud-in-cloud problem).

And the region with 6 <0 will never be involved in any
collapsed object (i.e., P(> 8, —1/2 as 6(M) —0). Then,
simply we multiply a factor 2 to avoid the problem.

_|dP(> &)
dM =2 d °
"> n(M)MdM p‘ ar |, M ©
Hence \[ dlnG Oc _zc?fm (7)
M2 | dinM G(M)e
3
When G(M) OCM_aﬁp(k)ockn’ = n—é_
M

" o—2 20



Press-Schechter (PS) formalism

The Schechter function, often used as an approximation
form of galaxy luminosity function was originally inspired
from the PS mass function.

However, the original formulation by Press & Schechter
contains many insufficient assumption as a mature theoretical

framework.

The current main stream of the mass function formulation is to
derive the PS mass function by modeling the merging of galaxy
halos (extended PS formalism: e.g., Lacey & Cole 1993).

Since this framework itself gives a formula which better fits the
N-body simulation results, purely theoretical attempts to aim at
better understanding of the physics of halo formation is in
progress(e.g., Nagashima 2001).



Press-Schechter mass function with cosmic time
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6.2 Bias



Basic concept of bias: why is it needed?

Observational fact: clusters of galaxies are more strongly
clustered than galaxies.
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Peak model and halo bias

Basic assumption: when fluctuations smoothed with a
certain scale R, 0y, exceed a threshold o, they start to grow
nonlinearly and form objects (dark halos).

: R vy oy

(Peacock 1999)

Fluctuations which are on a larger spatial scale fluctuation
(dashed line) are easier to exceed the threshold.

::> The distribution of dark halos is more localized
than the dark matter: halo bias



Peak model and halo bias

Consider a density fluctuation field:
o(X) : density fluctuation field with a zero mean and
dispersion c>.
&(r) : correlation function of the density field 0.

&, (r): correlation function of density peaks which lie
above a threshold vo.

6., () is defined as a fractional probability that &, = 5(X,)
> vo given that 8(X,) > vo, where I' = ‘ﬁ — Fz‘ :




Peak model and halo bias

If § is a Gaussian random field, the probability P, such that
d > vo at X, is expressed as

)

Then the probability that both 6, and 0, lie above the
threshold vo , P,, is

P, = Ojo TP(yl, y,)dy,dy,

Vo VO

] S e
27]£(0)? —g(r)]‘ BEEOEHGN M S G I () §2

VO VO

. OO —25_<r>y1y2} (10)

—€Xpy—

by 110) = (s & 2{E(0)* = £(r)’ |




Peak model and halo bias

Using P, and P,, the correlation of the high-peak regions is

defined as P
2

1+§>v(r) :P_ (11)

To calculate this quantity, we should perform some
arithmetic: define y = on, dy = odn, then we have

00 _y_2 00 _ﬁ

o N27mo? N2 Jr J2



Peak model and halo bias

And since (0) = 6%, y, = on,, and Y, = on,, we obtain

-

P, =

0 0]

|

1
B 5<r>2}

27{1
s(0)

5(0)

-

s(r)
&)

gl

72 _H‘exp< —

-

erfcl < —

5 1/2
2{1 _ §<r>2}
SO

- (d 7

&(r)’
5(0)

772

e 2dnpdn,

(13)



Peak model and halo bias

By using eqs. (12) and (13), we get

Fo S arpel L V= E/EO) }d
Jo te C{ o EEGIEO)

]

Equation (14) is approximated in extreme cases as follows:

(14)

£(r) << £ s —— 0 (15)
LezjezdyJ
v>>1 £.,(r) z%f(r) (16)

Equation (16) is the high-peak bias formula derived by Kaiser
(1984).




Galaxy bias and galaxy formation

From eq. (16), the larger o, is, the more strongly the density
enhancement localizes, i.e., the fluctuation becomes stronger.

Baryon gas cools and falls onto the halo potential well and
contract to form galaxies.

I::> Galaxies are more localized within halos: galaxy bias

Galaxy bias depends on the physics of galaxy formation (and
evolution); it differs depending on the population of galaxies
(red and blue galaxies, luminous and less luminous, massive
and less massive, optical and IR, etc.).

These characteristics are clearly reflected to the luminosity
function and correlation functions of galaxies.



Halo mass function and luminosity function

dN/d(log,e M) [h® Mpc?]

Halo mass function and galaxy luminosity function are very

different in their shapes.
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Clustering dependence on color (or equivalently, spectral type)

1000
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(Zehavi et al. 2005)

Bluer galaxies are less
clustered than the whole
population, while redder
ones are more strongly
clustered than the whole.

%

Thought to be related to
the peak bias, since redder
galaxies are believed to
have formed in high-c
peaks.




Clustering dependence on luminosity
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Clustering dependence on wavelength (optical and IR)
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7. Galaxy Formation

7.1 Physics of galaxy formation
7.2 Formation of Population III stars
7.3 HI cosmology: prelude to SKA



7.1 Physics of galaxy formation



Halo mass function and luminosity function

dN/d(log,, M) [h® Mpc-2]

The functional forms of the halo mass function and galaxy

luminosity function are significantly different.
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Physics of galaxy formation

Halo = galaxies

Dark halo: purely gravitational
= dynamical evolution, merging
Baryons: hydrodynamics, electrodynamics, etc.
= cooling
star formation
chemical evolution, formation of dust
feedbacks

blackhole formation, AGN formation



Merging

Dark halos of CDM form from smaller masses, and grow
with time via merging and mass accretion to form larger
mass objects: hierarchical structure formation

(e.g., Searle & Zinn 1978)

&

A scenario to form a large
object at once from the
beginning:

monolithic formation

| . (e.g., Eggen et al. 1962)
Lacey &Cole (1993)




Baryon cooling

When halos collapse or merge, a shock wave is generated in
baryonic matter and the gas will be heated.

e

How to cool the gas to form galaxies?

Why do galaxies have only masses < 102 M__, while there
are halos with masses of 10> M_ _(clusters of galaxies)?

sun

The gas temperature is typically an order of virial temperature

GMm,,

kB Tgas ™~ kB Tyir ~ -

Galaxies: T ~ 1043 K, clusters: T > 107 K (< 1 keV)



Cooling function

Cooling function A is a function of temperature and
metallicity (see Sutherland & Dopita 1993).

Y

. B

Atomic lines

Bremsstrahlung

Molecular lines ' (K] Maio et al. (2007)



Baryon cooling: why there is no galaxies with M > 1013 M,

10"M  halo with gas cooled 10'*M halo with gas not cooled



Cooling time of cosmic objects

We can estimate the cooling time {_ , of a clump of baryonic
gas by using the cooling function. Let n be the gas number

density, we have ko T
lcool =2 ——
nA

The dynamical time {,,, of an object is estimated by the free-
fall time, !

ldyvn =~ —F——
dy /—Gp

Rees & Ostriker (1977)

Leool << lg4yn: baryons fall onto the halo center with a
timescale of {;,, before feeling the pressure generated by

shock heating.

leool = Layn: baryons are supported by the pressure and
dissipate their energy quasistatically.




Cooling time of cosmic objects

Clusters B /

_lozm,
108 4
T -
106 i "_F_ 109Msun
ot | - 108Mm,,,

Rees & Ostriker (1977)



Cooling time of cosmic objects

Cooling time explains this difference

dN/d(log,, M) [h® Mpc-3]
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Cooling time of cosmic objects: recent progress

The above discussion is a well-established concept to explain
the lack of galaxies with M ~ 1015 M, galaxies.

However, this is basically a one-zone argument. Recent
studies revealed that the gas cools efficiently at the center of
clusters of galaxies if we consider the density profile properly.



Cooling time of cosmic objects: recent progress

The above discussion is a well-established concept to explain
the lack of galaxies with M ~ 1015 M, galaxies.

However, this is basically a one-zone argument. Recent
studies revealed that the gas cools efficiently at the center of
clusters of galaxies if we consider the density profile properly.

e

Overcooling problem has revived!

People are trying to solve the problem by the feedback effect
from AGNs at the center of clusters, but it remains a matter
of strong debate yet.



Star formation in galaxies

Gas cooled and fallen onto the halo center starts to be
fragmented and contract, to form stars finally.

Jeans instability
hydrodynamic instabilities

magnetohydrodynamic instabilities etc.

In order to understand the physics of galaxy formation, we need
to understand the formation process of first stars (Population
III; Pop III). However, it is still poorly understood theoretically,
and only phenomenological methodology assuming properties of
local galaxies is adopted (e.g., semi-analytic models).



Dust formation

Most of galaxy formation and evolution models adopt
oversimplified assumptions, e.g., the properties of dust
extinction to be the same as those of the Milky Way.

Stellar species which supply dust change with galaxy
evolution, from supernovae, novae, AGBs and RGBs (and
planetary nebulae). There exist very few models which
include the evolution of the source of dust supply, and even
existing models are quite premature (e.g., Takeuchi et al.

MNN? MINNE. Ao al M12a h M1 Ace NNazawxra o al N
UV, LUUJ, ASANo Cl al. aULlOde Uy LUJ.“I', iINvzZzavva Ut al. 4V



Feedback

Star formation = supernova = galactic wind

Supernovae heat the ISM, and blow away the gas
mechanically, and destroy molecular clouds by shocks.

L

Reduction of star formation activity

Since supernovae are originated from massive stars, the
timescale is short (10%7yr).

I::> Supernova ratecstar formation rate

Many problems remain unsolved, e.g., how much energy is
given to the ISM. The same as for AGN feedbacks (Dekel &
Silk 1986; Mac Low & Ferrara 1999; Ferrara & Tolstoy
2000; Veilleux et al. 2005; NcNamara & Nulsen 2007).



Feedback

Veilleux et al. (2005)




Feedback

Supernova feedback explains this difference??

0.1
F‘
T
(=
=8
= 0.01
=,
=
> 0.001
=i}
=
3
> 0.0001
=
10-5
10-¢

I |||||:1'| Frrrren

------------------ SCDM
-------- TCDM
———— ACDM.5

3 S mrmmimimm QCDM.G 3

: ACDM.3 3

3

E

1 IIIIIII:I 1 IIIIII|J 1 IIIlI.:

101 102 101 10 101

mass (h™! M)

Somerville & Primack (1999)



7.2 Formation of Population III stars



Basic properties of Population III stars

Population III
1. First stars formed from metal-free gas

2. Forms from the cosmological initial condition (no
stellar feedback)

N.B., Some people call simply extremely metal-poor
stars Pop III (e.g., Z ~1/10000Z ).

Since metal-free gas cannot contract with metal line cooling,
it is very difficult for them to collapse.

%

Cooling can proceed only via line emission s of hydrogen
molecules (H,, HD)(e.g., Nishi et al. 1998).



Formation of molecular hydrogen in a gas phase
Formation of H, and HD in a gas phase:

Universe just after the recombination :ionized fraction ~ 10

H'+e —>H +y
Basic reactions:
H +H’ — H, +e

These reactions proceed with electrons being a catalyst.
In the Universe after recombination, molecular hydrogen
formation starts via relic electrons after the Big-Bang. To
be precise, some tens of reactions proceed simultaneously
in a very complicated way (e.g., Galli & Palla 1998).

Cf. In the ISM with a metallicity similar to solar, as the
MW, H, formation proceed with dust surface as a
catalyst. The H, formation on dust grains is more than
100 times more efficient than that in a gas phase.



Reaction network in the pregalactic era

B*| 4 | E E

N

Galli & Palla (1998)
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First collapse of Pop 111

1. Formation of the first object 2. Fragmentation of the first
objects

relaxation to main sequence star



Formation of the first object (minihalo)

a Cosmological halo b Star-forming cloud

e300 pe <€

Y

d New-born protostar ¢ Fully molecular part

25 Ro 2t

Bromm et al. (2009)

5 pc

10 au

At z =20-30, 3-4c peaks of
dark matter collapse to form
minihalos (M, ,,, ~ 10° M and
the T, ~ 103 K). These

minihalos are the site of the
first star formation.

Since minihalos are predicted
to be strongly clustered (halo
bias), the feedback from the
first star is very important in
determining the state of
surrounding gas clouds.



Formation of the first object (minihalo) II

Bromm et al. (2009)

The number of stars formed
in a minihalo cannot be very
large (one or a few at most),
because the strong UV field
dissociates the molecules

around the first star (e.g.,
Omukai & Nishi 1999).

V

A Minihalo cannot form a
galaxy.




Runaway collapse of dense cores: formation of a protostar

Primordial gas clouds undergo runaway collapse when
sufficient mass is accumulated at the center of a minihalo.
The minimal mass at the onset of collapse is determined
by the Jeans mass

szsoomsun(—T M 0 J
200K ) \10* cm

Typical fragmentation mass is ~ a few X 102-10° M.

The Jeans mass only gives an estimate of the stars formed.
Standard star formation scenario predicts that a tiny
protostar forms first and subsequently grows by accreting
the surrounding gas.



Properties of the accretion to Pop III stars

1. High accretion rate: for a zero-metal gas with T ~
300 K,
c.’

M ~ - ~T?=0.001-0.01M__yr’
(Stahler, Shu, & Taam 1980)

=shorter formation timescale.

Ct. for a present-day star formation (Pop I),
M=~10°-10"M__yr"

2. Low opacity of accreted matter because of no dust

—weak radiative feedback from the accreting star.



Protostellar evolution of Pop III stars with accretion
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Protostellar evolution of Pop III stars with accretion
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1. Adiabatic phase. A protostar expands gradually.



Protostellar evolution of Pop III stars with accretion

’E‘; 1000 E | IIIIIIII | IIIIIIII I T T | IIIIII| | I:IIIII-:I-
s - Z=0 -
o . ; .
(¥ 4] [+ : -
=

;a' 100 \ : =
iy o \ | -
x, C LU
;5 B \_ i =
S 10 — 1/4 Mpq —
O : -
-+ B -
o E ]
& | IIIIIIII | IIIIIIII | IIIIIII| 1 IIIIIII| L 1 11111

0.01 0.1 1 10 100 1000

Protostellar Mass M, (M,)

2. Kelvin-Helmholtz contraction phase. The gravitational
attraction stops the expansion and contracts toward a main-
sequence radius.



Protostellar evolution of Pop III stars with accretion
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3a. Contraction proceeds and a protostar reaches the zero-age
main sequence (ZAMS) phase. 3b. Radiation pressure causes a
sudden expansion and the outer layer is blown away.



Protostellar evolution of Pop III stars with accretion

1. Owing to the fast accretion, the star becomes massive
before H burning (H burning via CN cycle starts at
40-100M ;).

2. Accretion continues if the accretion rate is

M<M_ =4x10"M__yr"

3. no stationary solution for > 100M g if the accretion

rate is
M>M_ =4x10"M__yr

crit

Omukai & Palla (2003)



Mass of Pop III stars
The mass of a Pop III star is determined by
M * mln(M frag ? M ) tOB 2 M feedback)

where

M, :fragmentation mass ~1000Mg
M :accretion rate ~ 10°M g yr!
tog : massive star lifetime ~10° yr

M ..canacic MAass of star when the accretion is halted by stellar
feedback > 100M

:: > M.=100-1000M_,

Thus, Pop III stars are predicted to be very massive.




Formation of the second generation Pop III stars (Pop 111.2)

1. Initial condition in the formation is different from
first generation (Pop IIl.1) stars:
Ionization by Pop III.1 stars.
Density fluctuation induced by HII regions of the
Pop I11.1 and blast waves generated by the first SN.

2. Environment is different:
External radiation field (UV from Pop 111.1)
Cosmic rays

3. Abundance is different:
Metal supply from Pop III.1 stars
Dust formation

Due to these differences, the Pop II1.2 stars do not become as
massive as Pop III.1 stars.




Metallicity effect on the formation of Pop III
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Metallicity effect on the formation of Pop III
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Metallicity effect on the formation of Pop III
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Metallicity effect on the formation of Pop III
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Metallicity effect on the IMF of Pop 111
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The IMF of the fragments
of gas with different
metallicities.

With zero metallicity, the
mode of star formation is
that of Pop III.1 with
which only very massive
stars form. Then, with
increasing metallicity, the
Pop I11.2-1I mode becomes
significant and low-mass
star formation occurs.

Omukai et al. (2005)



Population III star formation: summary

1. Pop III stars
i. Pop II1.1 (first generation)
Forms in minihalo, cooling only by H, molecules.
Typically very massive (100-1000 M )
il. Pop IIL.2 (second generation)
Cooling by HD, etc.
Less massive than Pop III.1.

2. Even a tiny amount of metals (~10-Z) alters the mode
of star formation from Pop III.1 to Pop II1.2.

3. Because of two different modes in contraction, the IMF
has a bimodality when the metallicity is low. With
increasing metallicity, the two peaks of the IMF
sradually merge and it becomes unimodal.



Population III star formation: latest result
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0.001

1e-4 :

No feedback

feedback

10

20 30 40 50 60
Stellar Mass: M, ( M)

However, Hosokawa et al. (2011) have shown that the feedback
stops the mass accretion and the final mass of the Pop III stars
cannot be high, only up to 40 M. Still there is a controversy.



7.3 HI cosmology: prelude to the SKA



7.3.1 Square Kilometre Array (SKA)

A huge radio interferometer with a total antenna area of 1
km?

— More than 10 countries joined officially, and 20 countries
are interested in it.

— Frequency: 0. 1IGHz - 10GHz (lower than ALMA)
Total antenna number: 15m antennas X 3000
Longest baseline: 3000 km
Location: Australia (SKA-low) and South Africa (SKA-mid)

Feature: high frequency resolution, high angular resolution,
wide area, wide frequency coverage

= Ultimate long-wavelength continental radio telescope!



SKA-low: artist’s view




SKA-low: location

Square Kilometre Array »
Australia» New Zealand

Potential array station

5,500km baseline




SKA-mid: artists’ view
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7.3.2 Specs of SKA
SKA1 (Phase 1)

* About 10% of the ultimate
specs of SKA

 Two topics are focused as the
important themes of SKA1

1. History of HI from the
dark age to the present.

2. Gravitational wave
detection by pulsar
observations.

Parameter Value
Frequency Range: Antennas
SKA, Low: (sparse aperture arrays) 70 -450 MHz
SKA; Mid: (dishes)
Capability range 03-10GHz
Initial baseline implementation 045-3.0GHz
Baseline instrumentation
SKA, Low: 70— 450 MHz
2000 m7/K
SKA,; Mid: 045-30GHz
1000 m*/K
SKA,; Advanced Instrumentation eg.
Program High-frequency feeds,
Field-of-view expansion
technology,

AA digital upgrades,
Ultra-wide-band feeds efc.

Frequency resolution (low-band): 1kHz
Time resolution:
Tied Amray Beam (pulsars, VLBI) 1 nsec
Pulsar search equipment 0.1 msec
Max_ baseline length from core 100 km




SKA2 (Phase 2)

Ultimate SKA. Final details will depend on the technical
development and scientific requirement.

Parameters

Frequency range 70MHz ~ 10GHz

Sensitivity 5,000 m2K-! (400 pJy min1)

FoV 200 deg? (70 ~300 MHz),
1-200 deg? (0. 3 ~ 1 GHz),
max 1 deg? (1 ~ 10 GHz)

Angular resolution < 0.1 arcsec

Bandwidth (simultaneous) band center = 50%

Spectral channels 16,384 per band per baseline

Precision of polarization 10,000:1




7.3.3 Comparison with present-day facilities

JVLA | MeerKAT S:::;' ASKAP :uK::y LO;’:R' s:g::-
Aeff/Tsys m2/K 265 321 1630 65 kQ y 61 1000
Survey FoV deg? 0.14 0.48 0.39 30 % 6 6
SRSl E R deg% ' 0.98x10° | 5.0x10* | 1.0x10° | 1.3x10° 2/)(1\\6 2.2x10* | 6.0x10°
FoM K2
Resolution arcsec 1.4 11 0.22 7 / 0.9 \ 5 11
Al Tsys: oxJVLA 6xXASKAP 16xLOFAR
Survey Speed: 100x 22X 270x




Comparison of SKA with other facilities: sensitivity
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Comparison of SKA with other facilities: survey speed
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7.3.4 Expected redshift distribution
Expected HI redshift distribution

Abdalla et al. (2010) o
The redshift distribution of HI

/\ p uchd Rcd Book galaxies has a peak at z ~ 0.4 for
7 a "] SKAI survey, and z ~ 0.6 for
Euclid E SKAZ,

4 Most of the sources are at z <2.

SKA2

N,.(galaxies) [x108]

Redshift



7.3.4 Expected redshift distribution

Expected radio continuum source redshift distribution

The redshift distribution

b 11—z Of radio continuum
angres = 1.0 arcsec dens = 3.1 c1rcn*|!n_2 .
T8 g o3t wml gSoonn:  { sources is more extended
5 of Dashed nes show Hi ?12‘1?;2%??5 " _ ':' o toward high- than HI.
1 0.03 u Jy~SKAZ
: - ;
5
= 0.3 1 Jy~SKAI
S5 ] :
Z 3 — N.B. However, this
7 UcCll . .
o 1 5 . - expectation is based on a
Redshift certain galaxy evolution
(Blake et al. 2007) model, which is to be

examined by SKA. See,
e.g., Mancuso et al. (2015)



7.3.5 New topics in galaxy evolution

Galaxy evolution at SKA frequency

Existing HI surveys are shallow (> mJy), with poor angular
resolution.

NRAO VLA SKky Survey (NVSS)

Sydney University Molonglo SKy Survey (SUMSS)
Faint Images of the Radio Sky at Twenty-cm (FIRST)
Westerbork Northern Sky Survey (WENSS)

The HI Parkes All Sky Survey (HIPASS)

The HI Jodrell All Sky Survey (HIJASS)

The Arecibo Legacy Fast ALFA Survey (ALFALFA)
etc.

<z>~0.01-0.06

= We can examine the properties statistically only for
nearby galaxies, and it is difficult to discuss their evolution.



Luminosity function at radio wavelengths

1.4 GHz continuum luminosity function

—1 —3
log,g[® (mag™ Mpc )]

o All radio sources

20 22 24 26

log,o[Py 4 (W Hz "]

(Mauch & Sadler 2007)

Galaxy LF at 1.4GHz by
NVSS and 6dFGRS.

We note that the radio
LF cannot be well
described by Schechter

function, unlike optical,
UV or NIR.

Neither by the double-
power-law, unlike FIR or
X-ray LF.



1.4 GHz continuum luminosity function

—4

—B

logg[® (mag™" Mpc™)]

x Star—forming qalaxies

o AGNs

20 22 24 256

log [Py 4 (W Hz™"]

(Mauch & Sadler 2007)

| If we plot the LFs of SF

galaxies and AGNs (radio
galaxies), we find that

| there are two power-law

function components
(Machalski & Godlowski

| 2000; Mauch & Sadler

2007)

=Do they evolve?



Radio number counts

010 ' ' ' |
1 Different evolutions of SF

20 em (1.4 GHz)| galaxies and AGNs are suggested

from number counts (Takeuchi
et al. 2001).

Model NC of SF galaxies

Observed: at bright fluxes,
AGNs with developed lobes
dominate the counts.

Number count N (>S,) [sr!]

- & Gruppioni et al. (1899)

107 L . I ' ' '
107% 107% 107% 10°
Flux density S, [Jy] See also Mancuso et al. (2015)




Gb(MHI: M,) []Mpc 3 dex ]]

HI mass function (GASS)

100 1[]25

10.0, 10 25

10.5, 10.75

(s
10.75,11.0

11.0, 11.25

11.25,11.5

9.5 100 10.5 11.0 85
log My,

9.0
log My,

9.5 10.0 10.5 11.0

D Stellar mass range

HI mass function

—_ Fil

- | Broken
— Bent

Schechter

— ALFALFA

log-normal

. Broken Schechter
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(Lemonias et al. 2013)

HI MF gives an important constraint on the theory.



Scaling laws including gas properties in galaxies
Baryonic Tully-Fisher (BTF) relation

Stellar mass [M ;]

o) IV
-l @“
]| > 38
] 2%

=
%I =%
=)
-
-1 = 8
)
':?./ S% 1
s
- =

10°
Circular velocity [kms™] (McGaugh et al. 2000)
If HI mass is taken into account and we construct a relation

between baryonic mass and circular velocity, linearity is
recovered (McGaugh et al. 2000).
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The “extended” BTF

Mgo0 (M)
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(McGaugh et al. 2010)

In the extended BTE, the slope
becomes shallower from dwarft
spheroidals, normal galaxies, to
clusters (clusters: violet symbols,
giant galaxies: blue symbols, and
dwarf spheroidals: red symbols).

= Feedback?

However, this sample does not
include gas-rich dwarf galaxies.

Toward lower HI masses!




Required sensitivity to examine the scaling relations of nearby
galaxies

Tp detect the HI emission down to galaxies with HI mass =
13 My(~M of dSph) at 3 Mpc, we need

baryon

M V B
S, =50
' (103MsunJ(10kms'lj LAy

= SKAI1 can achieve this sensitivity.



Star forming galaxy main sequence

Since the SFR is the most interesting quantity, we want to
examine the scaling relations including the SFR.

Specific star formation rate (SSFR)

SFR
SSFR =
M., =
5
A prominent sequence of SF |
.« . -
galaxies is found on the =
stellar mass-SSFR plane: 7
star-formation main Qo
sequence (SFMNS).
cf. The SFMS corresponds to log M.

the blue cloud on the color- o .
magnitude diagram. (Schiminovich et al. 2007)



Star forming galaxy main sequence

The SFMS is a sequence of galaxies with a secular evolution
(i.e., not merger).

Starburst galaxies (e.g., ULIRGS) -s- -
strongly deviate from the SFMS [\, ° _
(e.g., Buat et al. 2007). i

(Buat et al. 2007)

—11 | | | | | | | | | | | | | | | | | | | |
8 9 10 11 12 13

108(Mstar) (Msun)



Star forming galaxy main sequence

The SFMS is a sequence of galaxies with a secular evolution

(i.e., not merger).
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(Genzel et al. 2012)

Dependence on various
quantities are examined (dust
temperature, clumpiness, etc.,
particularly the relation to
the molecular gas mass
(Genzel et al. 2012; Magnelli
et al. 2012).

Some CO observations reach
redshifts of 1 <z <2, but not
yet to be called a survey.

HI is far behind it.



Schmidt-Kennicutt law

By considering the size of a galaxy, we can discuss the relation
between surface densities of gas and SFR. This is know as the
Schmidt-Kennicutt law (see also Samuel’s lecture).

3 A Galaxy type
e Normal/irregular
» Low surface brightness
& Infrared-selected
[0 Circumnud ear
o Metal-poor

] The classical Schmidt-Kennicutt
law is the relation between the
surface densities of gas and SFR.

A single power law is found in a

. wide range of gas surface density,
- but the slope is still a matter of

' debate.

log [Zgpp (M, year-1 kpc-2)]

o= 2 7w (Kennicutt & Evans 2012)

log [Egas (Mg pc2)]



Schmidt-Kennicutt law

What the S-K law shows is the relation between total gas mass

(HI + H2) and SFR. I | IMSI'I (I(IennlicultteltaI.IEOli;J‘)—IAplertLJresl |
: & 51 (Schuster et al, 2007), NGC 4736 and NGC 5055 (Wong & Blitz 2002), and
, NGC %6 (Crosthwaite & Turner 2007) - Radial profilas A
° I~ & Mon-starburst spirals (Kennicutt 1998k) - Glabal
We need Observatlons Of HI : A Starburst galaxi:s (I(e(rmicutt'IQQBb)—)Global A A %
- @ LSE galaxies (dfyder et al, 2009) - Globkal ‘ﬁb A
asdeepas CO(1<z<2),to | Al
° h
explore the evolution of the J s 4
S-K law. T o
: £
%t §i
= SKA1 to SKA2 it
5o 3.
° ° S
Synergy with observations ¥ |
of molecules is important! T - |
L2 |
al |
I N I
o - |
(Kennicutt & Evans 2012) .~ T
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Transition from HI to H, and star formation

Production Dissociation

* 2-atom conjugate reaction * Photodissociation by UV
Not efficient in a dense dusty

* 3-atom collision reaction molecular clouds because of
self-shielding.
H+H+H — Hs+ H.
* Dust surface reaction * Dissociation by cosmic rays
= most efficient in galaxies Dissociate H, in molecular
clouds.

* Dissociation by collision
(1) sticking (2-)_-diffusi0n (3)_-1;eaction (4).“e-jecti0n Contribution is small.

(Takahashi 2000) (e.g. Gould & Salpeter 1963;
Draine & Bertoldi 1996)




H: and HI in galaxies

ZHI [M ® pC'Z]

ZHZ [M@ pC'Z]

Radius [kpc]

fmol (= XH2/ Ztotal)

* For late types, f__, ~25-30 %

* Radial decrease.

At galactic center, f 1

"~/
mol

Ym2+a1 [Mg pe?]

Radius [kpc]

(Bigiel & Blitz 2012; Boselli et al. 2014)



Transition from HI to H»

* Threshold density above which the photodissociation becomes

efficient (Z is assumed):

Y2 ~ 10 Mgpce?2, Nur ~ 10! cm?
Consistent with of local late-type galaxies.
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(Bigiel et al. 2008)



Transition from HI to H»

* Transition column density is determined by metallicity (Gnedin
et al. 2009).

Metal-poor molecular clouds do not contain much dust
=Critical Nur becomes higher.

I =
24 Milky Way I
1074 . i) | A FUSE Halo |
A ] - ¢ Leroy07;
. /‘I‘.‘il FUSE Disk | sMc® -
sl TR _ 1 ( 1
10 ':}'\""-N m Wolfire08 3 < 71*8“}3{%!3 5
AR '
10" 10%*° 10%*' 10% 10*® 10" 10% 10* 10* 10* 10" 10* 1 10%# 10*

Ny +2Ny, (em™) Ny +2Ny, (cm™) Np+2Ny, (cm™)

(Gnedin et al. 2009)



Exploration of galaxy formation via absorption

Observation of gas-dominated galaxies

In optical, gas that is not yet turned into galaxies, or gas-
dominant young galaxies can be efficiently detected through
QSO absorption lines.

S O

Quasar 3 Observer
115:[: _l T T T T T T | T T T | T T T | T T T I T T T | T T T | T T T | T T _I
c 5 - e Ly Forest < _Lya Emissionq
| - 4
E 4+ partial Break CIV Abs. 7
T .. < l DLA LS from DLA"
n
2 I ]

. 1F .
s - i
3 =5
I 650 I 0 A S

1600 1800 2000 2200 2400 2600 2800 3000 3200
Wowelength, A



Exploration of galaxy formation via absorption

Observation of gas-dominated galaxies

In optical, gas that is not yet turned into galaxies, or gas-
dominant young galaxies can be efficiently detected through
QSO absorption lines.

Quasar Observer

QSO absorption line systems with particularly high H-
column density are observed as damped Lyman o systems
(DLAS). Such systems are thought to be a progenitor of
present-day giant galaxies.



Observation of gas-dominated galaxies

Quasar Observer

Observations showed that these systems are gas-rich and
metal-poor (e.g., Ledoux et al. 2003).

Also, DLASs can be a probe to explore the power spectrum of
the large-scale structure at smaller scales.



Observation of gas-dominated galaxies

Quasar Observer

Observations showed that these systems are gas-rich and
metal-poor (e.g., Ledoux et al. 2003).

Also, DLASs can be a probe to explore the power spectrum of
the large-scale structure at smaller scales.

However, there is a fundamental problem in optical/UV-based
observation!



Observation of gas-dominated galaxies

We want to detect absorption line systems. However, since
the continuum emission from background quasars would be
very strongly extinguished through the systems with
extremely high column density, such systems would be
dropped from the initial selection (Vladilo & Péroux 2005).

Quasar Observer




Observation of gas-dominated galaxies

We want to detect absorption line systems. However, since
the continuum emission from background quasars would be
very strongly extinguished through the systems with
extremely high column density, such systems would be
dropped from the initial selection (Vladilo & Péroux 2005).

Quasar Observer

But such a high column density systems are very possibly
just before the initial starburst. Namely they are the systems
fundamental to understand the cosmic SF history and what
we indeed want to observe.



Observation of gas-dominated galaxies
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We want to detect absorption line systems. However, since
the continuum emission from background quasars would be
very strongly extinguished through the systems with
extremely high column density, such systems would be
dropped from the initial selection (Vladilo & Péroux 2005).

Quasar Observer

But such a high column density systems are very possibly
just before the initial starburst. Namely they are the systems
fundamental to understand the cosmic SF history and what
we indeed want to observe.

This selection bias is fatal!




Observation of gas-dominated galaxies
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How do we solve this fundamental problem?

Quasar Observer



Observation of gas-dominated galaxies
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How do we solve this fundamental problem?
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Quasar

Select quasar continuum at radio, and explore 21-cm
absorption line systems: best topic for SKA2!

Advantage to optical/UV absorption line observation:

1. Atradio, dust extinction is negligible.
2. Because of small cross section, very high column density
systems can be observed.



Observation of gas-dominated galaxies
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How do we solve this fundamental problem?

Quasar Observer

Select quasar continuum at radio, and explore 21-cm
absorption line systems: best topic for SKA2!

Advantage to optical/UV absorption line observation:

1. Atradio, dust extinction is negligible.
2. Because of small cross section, very high column density
systems can be observed.



Observation of gas-dominated galaxies

Not only the continuum observation but also ancillary
observations like radio emission, optical etc. will provide us
with more information on the physics of the systems.

We are also developing theoretical models of galaxy evolution
in parallel.



Observation of gas-dominated galaxies
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Statistics of HI absorption line systems

Requirement for unbiased detection of DLAS:

1. For a typical QSO (100 mJy), rms ~ 33 nJy is needed to
detect T ~ 0.001.

2. Since the noise level should be 1/3000 for a continuum, the
dynamic range must be 35 dB.

3. Pointed observation: to detect T ~ 0.001, a pointed
observation with ~ 10 hr per one DLA by SKA-LOW is
ideal.






