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1.1 Self-gravitating system



Virial theorem of N-body system

The equation of motion of N-body system is
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where a gravitational potential made by these particles 
themselves is
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Virial theorem of N-body system

The rhs of eq. (2) is a potential-energy tensor
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Since eq. (3) is symmetric under an interchange between i and j, 
we obtain 

3
),(

))((
2
1

ij

ijij
j

iji

i

xx

xxxx
mmGW 




 






Also, the above is symmetric for  and, , the rhs of eq. (2) is 
l t i Th it l d

),( iji xx

also symmetric. Then, it leads

  


 K
d
Id

xxxxmxxm iiiiiiii 2
2
1

2
1

2

2

   (4)   dti 22 2 ( )



Virial theorem of N-body system

Thus, we obtain the so-called “tensor virial theorem”
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Virial theorem of N-body system

In the case of virial equilibrium, we have 

(6)02 WK (6)

Recall that the total energy of the system is
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The specific heat of a self-gravitating system 

This implies that if we take away the energy from the system, 
the kinetic energy increases. 

(8)
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The specific heat of a self-gravitating system 

This implies that if we take away the energy from the system, 
the kinetic energy increases. 

(8)

N l th ifi h t f th t i ti
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Namely, the specific heat of the system is negative. 

This leads to a very important conclusion that a self-gravitating 
system does not have an equilibriumsystem does not have an equilibrium. 

Because of this special property, structures spontaneously 
emerge in self-gravitating system (self-organization)! 

This is called the gravothermal catastrophe. 



Virial equilibrium and dynamical timescale

In the case of virial equilibrium, we have 
02 WK

Then, 
GM

In this case, the dynamical timescale is evaluated by
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1.2 Stellar dynamics



Large stellar system as a collisionless system

Collisional system

The system where the two body interaction is workingThe system where the two-body interaction is working 
effectively within a timescale under consideration (in our case, 
the age of the Universe).g )

Collisionless system 

The system where the two-body interactions does not work 
effectively.y

But what timescale should we use to evaluate the effect 
of collision?



Relaxation time

For this purpose, we estimate “the two-body relaxation time” 
of the system. We set as follows:
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A number of scattering of stars with velocity (v, v+dv) and 
impact parameter (b, b+db) in a time interval dt is expressed as 
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Then, we evaluate an accumulated effect of small angle 
scatterings with a mean square velocity change v2 (v << v).



Relaxation time

The amount of v is evaluated as
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Relaxation time

Since
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Relaxation time

Hence, 
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By using this relation, we can estimate the relaxation time, trelax, 
in which v/v = 1
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step v2 = GmN/R).



Astrophysical examples

Globular clusters 

N 105-6 R 20pc v 10kms-1N ~ 105 6, R~20pc, v ~ 10kms 1

tr ~ 108 yr << 1010 yr (~ the age of the Universe)
 Centauri

⇒ collisional system.

Elliptical galaxies 

N ~ 1010-12, R~10-100kpc, v ~ 200kms-1

tr ~ 1018 yr >> 1010 yrr y y

⇒ collisionless system!
M87



Basic equation: collisionless Boltzmann equation (CBE)

Fluid:

local equilibrium << dynamical time << global equilibriumlocal equilibrium << dynamical time << global equilibrium

⇒ can be described only as a function of position.

Stellar system: 

dynamical time << local equilibrium ~ global equilibriumdynamical time  local equilibrium  global equilibrium

⇒ depends on position and motion independently (6-
dim phase space)dim phase space) 

⇒ described by probability distribution function (DF) or 
phase density function )( tvxf phase density function                 . 

This is related to density as 
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Basic equation: collisionless Boltzmann equation (CBE)

Collisionless system: 

A point in the phase space does not jump but moves smoothlyA point in the phase space does not jump but moves smoothly, 
i.e., the “phase fluid” conserves mass. Hence, the distribution 
function (DF) conserves along a streamline.
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Jeans equation

Then, we derive Jeans equation to describe stellar system. 
We multiply vl

ivm
jvn

k on both sides of the CBE and j
integrate over velocity (to obtain moment equations):
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Jeans equation: continuum equation (zeroth order)
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Jeans equation: equation of motion (first order)
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Jeans equation
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Equation (9) is called Jeans equation

 
k

kl

lk k

l
k

l

xxx
vv

t
v














  

This is similar to Euler equation for fluid mechanics:

1. Lhs is a Lagrange differential of mean velocity along 
with a streamline.

2. First term of rhs is the gravitation.g

3. Second term of rhs corresponds to pressure gradient, 
but different from ordinary fluid, it is anisotropicbut different from ordinary fluid, it is anisotropic 
tensor. 

To know 2 we need the next order moment eqTo know 2
kl, we need the next-order moment eq. 

⇒ We adopt some assumption to solve this equation.



1.3 Structure and classification of elliptical 
galaxiesgalaxies



Introduction: ellipticals as complicated system

Until the late 1970s, it was believed that elliptical galaxies are 
simple systems: gas-free, disk-free, rotationally flattened 
ellipsoids of very old stars. In the last 20 years, most of these 
assumptions turned out to be wrong or only crude 
approximations:approximations:
1. Massive ellipticals are not flattened by rotation, but are 

anisotropic. p
2. Ellipticals do have an interstellar medium, but it is hot T > 

106K.
3 A i ifi f i f i i i i i i3. A significant fraction of ellipticals exhibits kinematic 

peculiarities (like counter-rotating cores) which point to a 
‘violent’ formation processviolent  formation process.

4. Low mass ellipticals seem to contain intermediate age stars.
5. All ellipticals and bulges seem to contain supermassive p g p

black holes amounting to about 0.2% of their mass.



Classification of ellipticals
1. Normal ellipticals

i. Giant elliptical(gE’s),
ii E’sii. E’s,
iii. compact elliptical (cE’s),
iv. (S0 galaxies).iv. (S0 galaxies).
Absolute magnitude range: MB = -23 ~ -15.  

2. Dwarf elliptical(dE’s)
Comparing with cE’s, they have
a. smaller surface brightness,
b more metal poorb. more metal-poor

3. cD galaxies
a. have absolute magnitude MB ~ -25a. have absolute magnitude MB  25
b. usually located near cluster center
c. have extended diffuse envelope
d. have high M/L



Classification of ellipticals
4. Blue compact dwarf galaxies (BCDs)

have B - V = 0.0 ~ 0.3,
er gas richvery gas-rich

often with intense star formation (in this sense, they are 
not exactly ellipticals).not exactly ellipticals).

5. Dwarf spheroidal galaxy
have very low luminosity (MB ~ -8),
have very low surface brightness.

1 2 3 4 5



Structure: de Vaucouleurs profile
Profiles of E’s and cD’s obey de Vaucouleurs law. 

Also, Re and MB are related
⇒ average surface brightness μave and MB are also⇒ average surface brightness μave and MB are also 
related: Kormendy relation 

Specific features for each type:
1. Normal E’s best fit de Vaucouleurs profile.
2 Profiles of higher and lower luminosity E’s decline2. Profiles of higher and lower luminosity E’s decline 

slower and faster at large r. Especially, cD’s only obey at 
the innermost part.p

3. dE’s are better described by an exponential profile.



Structure: de Vaucouleurs profile



Structure: Kormendy relation



Structure: three dimensional properties

Isophotes are to the first order elliptical
→ the density is constant on ellipsoids, i.e. the possible 
shapes are:

1. oblate (a = b > c, rotationally symmetric ellipsoid, like a 
pancake)pancake)

2. prolate (a > b = c, like a lemon)
3. triaxial (a ≠ b ≠ c, ellipsoid, like a box with smoothed edges)( ≠ ≠ , p , g )

All are projection of three-dimensional density profiles.



Structure: projection of three dimensional profile

Since the three-dimensional structure is triaxial, the projectedSince the three dimensional structure is triaxial, the projected 
profile has an axial twist.



Structure: isophotal shape 

Isophotes are generally not exactly elliptical. The “boxiness” 
or “diskiness” of isophotes is usually quantified by measuring 
a quantity denoted a3. First the ellipse Re(φ) is fitted to the 
isophote. For each angle φ, one determines the distance 

δ(φ) = Ri(φ) − Re(φ) 

between the radii of corresponding points on the ellipse and 
on the isophote. Then one expresses the function δ(φ) as a 
Fourier series:

a4 < 0: boxy isophotes,4 y p ,
a4 > 0: disky isophotes.



Structure: isophotal shape 



Structure: what determines the shape of ellipticals?

Brightness profile is determined by the distribution of orbits 
of stars. If the velocity distribution is anisotropic, the stellar 
distribution does not become spherically symmetric.

If statistical properties of the distribution of stellar orbits is 
independent of time, it is a static system. Though elliptical 
galaxies are collisionless system, i.e., two-body relaxation does 

t t k l lli ti l l i h hnot take place, elliptical galaxies have some homogeneous 
properties as we have seen:
1. de Vaucouleurs profile1. de Vaucouleurs profile
2. Not rotationally supported
3. Triaxial ellipsoidal figure
⇒ Even if without knowing the details of dynamical structure, 

we imagine that a certain “relaxation” occurs.

What is it?



Relaxation for collisionless system?: violent relaxation

What made collisionless system “relaxed”? Lynden-Bell 
(1967) proposed a possible mechanism referred to as “violent 

We start from the collisionless Boltzmann eq.

relaxation”.
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Microscopically it causes a phase mixing. Of course 
in space and time.

the DF, f, conserves, but it becomes smaller and 
smaller in scale. Then, macroscopically the coarse-

i d DF t “ ilib i ”fgrained DF       goes to an “equilibrium”f



Relaxation for collisionless system?: violent relaxation
Mixing of phase distribution by a violent change of the mean 
gravitational field in space and time, similar to the mechanism 
that a chaos occ rsthat a chaos occurs.

The resulting distribution is referred to as Lynden BellThe resulting distribution is referred to as Lynden-Bell 
distribution. 



Relaxation for collisionless system?: violent relaxation

In the context of statistical mechanics, Lynden-Bell 
distribution is regarded as the fourth distribution:

Particle
Exclusion       Indistinguishable    Distinguishableg g
Without         B-E distribution M-B distribution

With    F-D distribution Lynden-Bell distribution



Relaxation for collisionless system?: violent relaxation

However…

This distribution was not perfectly reproduced by numerical 
experiments. Even worse, some fundamental problems as a 
consistent theory were pointed outconsistent theory were pointed out. 

Relaxation process of collisionless system still remains as an 
open problemopen problem. 
Different derivation of the theory was proposed (Nakamura 
2000). Since this is also closely related to a long-standing 000). S ce t s s a so c ose y e ated to a o g sta d g
problem in plasma physics (collisionless space plasma often 
shows Maxwellian distribution, known as Langmuir’s 
paradox: Langmuir 1928).



1.4 Mass of elliptical galaxies



Mass of elliptical galaxies: classical observation

M/L ~ 5 at center of ellipticals; this does not require 
additional mass.

H f th l it di i f l tHowever, from the velocity dispersions of planetary 
nebulae or stars, a whole elliptical galaxy was found to be 
M/L > 10 for.M/L > 10 for.
Since the M/L of globular clusters is ~1-2, and ~ 2-3 for old 
galaxies assuming a normal initial mass function (IMF), 
we found that elliptical galaxies are more massive than we 
thought.



Mass of elliptical galaxies: classical observation

The measurement of a mean starThe measurement of a mean star 
velocity in an elliptical galaxy: 
the Doppler broadening of the the Doppler broadening of the 
absorption lines of a galaxy 
⇒ dispersion of the star velocity 
along the line of sight



Mass of elliptical galaxies: classical observation

NGC 1399



Mass of elliptical galaxies: X-ray observation

Since elliptical galaxies have hot X-ray gas, this can be 
used to estimate their mass reliably.

Assume a hydrostatic equilibrium.
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Mass of elliptical galaxies: X-ray observation

From X-ray observation, we can obtain n(r) and ρ(r). By 
assuming some simplifying scalingassuming some simplifying scaling,
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we obtain
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and this yields a consistent mass estimate with velocity 
dispersion observation with Jeans equation.  
T i ll M 1011 13 M ti d k ttTypically Mdyn ~ 1011-13 Msun , suggesting dark matter.



1.5 Scaling relations



Faber-Jackson relation

A relation between galaxy luminosity vs. velocity dispersion 
at the center.  
From the virial theorem (assuming a constant surface 
brightness  B): 
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In practice,  B is not constant 
⇒ th i d t k l b t 3 d 5
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⇒ the power index takes a value between 3 and 5.



Faber-Jackson relation

Since a luminosity of a galaxy is determined by using a 
velocity dispersion which can be directly measured, this 
relation is used to estimate a distance to a galaxy without 
going through the Hubble constant.
However in practice the dispersion is pretty large (~ 2 mag)However in practice, the dispersion is pretty large (~ 2 mag).



The fundamental plane relation

Since the dispersion in the Faber-Jackson relation is large, 
people tried to consider a second parameter to introduce 
(Dressler 1987; Djorgowski & Davis 1987; and others). 
parameter space 

We operate now in the 3-D space:

R – radius,
I – luminosity, 
 velocity dispersion– velocity dispersion,
or additionally (more dimensions)
μ – surface brightness and other parameters μ g p

Empirical relations ⇒ a plane in the 3D space (or even 
i i i )with more dimensions).



The fundamental plane relation

S f l ti i 3D fi dSpace of relations in 3D; we find 
a thin surface in the space.

Faber-Jackson and Kormendy 
relations (and other 2D relations) 
are simply projections of this 
plane on the 2D surface. Their 
dispersion are simpl a reflectiondispersion are simply a reflection 
of the non-flat shape of this plane 
seen in 3D.seen in 3D. 



Faber-Jackson (luminosity 
vs. velocity dispersion) The fundamental plane relation

Radius vs. surface 
brightness

Radi s s a combination of s rfaceRadius vs. a combination of surface 
brightness and velocity: fundamental 
plane seen edge-on. 

Surface brightness vs. velocity dispersion: 
fundamental plane seen almost from above



The fundamental plane relation
There are also numerous additional or alternative parameters 
introduced, e.g., Dressler parameter Dn (a radius inside of 

hi h th t t l f b i ht h t i lwhich the total surface brightness reaches a certain value 
(20.75 B mag arcsec-2) . 

Among others, the fundamental plane can conveniently be 
visualized in the κ-parameter space, using the parameters 
(Bender, Burstein & Faber 1992, 1993, 1994):

These new coordinates can be found systematically by a 
statistical method like the principal component analysis (PCA). 



The fundamental plane relation: -space



The fundamental plane relation: -space

E: squares
S0: crosses
dE: diamonds
dSph: small squares
compact E: circlescompact E: circles

(Bender, Burstein, & 
Faber 1992,1993, and , ,
1994)



The fundamental plane relation

Even though the kinematics of ellipticals can appear to be 
highly complicated in detail, the objects must in fact be g y p , j
rather similar with respect to their global structure and 
their stellar M/L.

No sufficient theoretical explanation yet for the existence of 
fundamental plane (ellipticals as a result of mergers of discfundamental plane (ellipticals as a result of mergers of disc 
galaxies?) .



2. Spiral Galaxy2. Spiral Galaxy
2.1 Structure of spiral galaxies
2 2 R i f i l l i2.2 Rotation curves of spiral galaxies
2.3 Scaling relations for spiral galaxies



2.1 Structure of spiral galaxies



Structure of spirals and lenticulars

We fit luminosities of a disc and spheroidal element (bulge) 
separately. 
1. Spheroidal element (bulge) can be described similarly to an 

elliptical galaxy, i.e., de Vaucouleurs’ r1/4-law.

(1)

Integrated luminosity is given by integrating eq.(1),

(2)



Structure of spirals and lenticulars

2. A disk can be almost always described by an exponential 
fit: 

(3)

where
r0: disk scale length (for the Milky Way, r0 = 3 kpc)r0: disk scale length (for the Milky Way, r0  3 kpc)
I0: the central surface brightness. 

N.B. the disk scale length is different from disk scale 
height.

Luminosity is given by integrating eq (3)Luminosity is given by integrating eq.(3),

(4)(4)



Structure of spirals and lenticulars: Sérsic profile

To describe these profiles, we can use a generalization of the 
de Vaucouleurs' formula, which works both for ellipticals 
and spirals: 

I(r)= I(r )exp{ b [(r/r )(1/n) – 1]} (5)I(r)= I(re)exp{-bn [(r/re)( / ) ]}                                (5)

where n : Sérsic index. This profile is called “Sérsic profile”, p p ,
named after the inventor (Sérsic 1963). 

4 ’ fin = 4 : de Vaucouleurs’ profile,
n = 1 : exponential profile 



Structure of spirals and lenticulars: Sérsic profile

N.B. this is a log-log plot and an exponential profile is NOT a 
straight line.



Sérsic index distribution as a function of luminosity

Ellipticals Raw data

Spirals

Ellipticals Volume-correctedp

Spirals
Driver et al. (2006)

p



2.2 Rotation curve of spiral galaxies



Dynamics of spiral galaxies: observation

Rotation curve: dependence of the rotation velocity around 
the galaxy center (more generally – any body in any 
system), vrot(r), on its distance from the center r.
This is measured by spectroscopic observation of emission 
lineslines. 



Dynamics of spiral galaxies: observation

At optical wavelengths, only the innermost part of galaxy 
disk can be observed: so radio observation of hydrogen 
21cm line is often used.



Dynamics of spiral galaxies: expected rotation curves

Assuming (for simplicity) spherically symmetric structure of 
a galaxy, the virial theorem can be written as: 

GM(< R)/R2 = v2
c(R)/R                                             (19)

which means

M(< R) = v2
rot(R) R/G                                                 (20)

i f iThis allows us to compute mass of galaxies, M.



Dynamics of spiral galaxies: expected rotation curves

Appearance of a rotation curve depends on the mass 
distribution of a galaxies M(< r).

?



Schematic description of rotation of a disk galaxy

Keplerian disk Constant velocity



Observed rotation curves of spiral galaxies

Bosma (1979)Rubin (1978)



Observed rotation curves of spiral galaxies

van Albada (1985)



Observed rotation curves: implication for dark matter

For most of spiral galaxies, their rotation curves remain flat 
out to radii much larger than the extent of the optical disk!

From v(R) ≈ constant and eq.(19), it follows
(21)

For the majority of spiral galaxies no decrease in the 
circular velocity has been measured even beyond radii of 
50 k t 100 k Thi i li50 kpc to 100 kpc. This implies

(22)

In contrast, only from the observable matter in the galactic 
disk, we have 

(23)

D i ll d i t l t 5 ti d kDynamically measured mass is at least 5 times more dark 
matter than M*+Mgas → strong evidence of dark matter!



2.3 Scaling relations for spiral galaxies



Tully-Fisher relation

v: the width of the line of neutral hydrogen H 21cm after 
correction for inclination. There is a proportional relation 
between galaxy luminosity at a certain band and v:

L ~ (v)a (25)Lband ~ (v) (25)

1. Öpik (1922) estimated a distance to M31 using the virial 
i itheorem before it has been proven to be out of the Milky 

Way.
2 Originally a = 2 5 from V-band data (Tully & Fisher2. Originally a = 2.5 from V-band data (Tully & Fisher 

1977).
3. Later more accurate data, a ~ 3 – 4 (depending on the , ( p g

observed wavelength).
4. For LH (1.65 microns) a=3.2.



Tully-Fisher relation: schematic description



Tully-Fisher relation as a distance measurement tool

T-F relation at near IR has been proven to be very accurate 
→ distance estimation



Tully-Fisher relation: crude analysis

Assume that the distribution of mass in the disk follows the 
surface brightness profile

I = I0 exp(-R/R0) 

The total mass in the disc will be then

R 
(26)

i f i f i i
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This means that a large fraction of mass is concentrated in 
the disk of the radius R ~ R0.



Tully-Fisher relation: crude analysis

Assuming that all the mass is concentrated in the disk 
center and that the gravitational force and centrifugal 
force balance each other for a given star (or mass element), 
we have

(27)
2

00max 2 RIv  (27)

which yields vmax ~ (I0R0)1/2, i.e., M ~ vmax
3.

2
00

2
RR



y max ( 0 0) , , max

If the surface brightness in the spiral galaxy centers is 
constant and we assume a constant M/L in the disks, we 
obtain L~vmax

3. However, both of the assumptions are not 
realistic as we have seen aboverealistic, as we have seen above.



Baryonic Tully-Fisher relation

The classical Tully-Fisher relation depends on the observed 
wavelength because it uses optical/NIR luminosity, which 
is strongly dependent on star-formation history or other 
non-dynamical properties (we see later).

This problem can be overcome by using the baryon mass 
instead of optical luminosity: baryonic Tully-Fisher p y y y
relation.

i i i i i iHere it is worth stressing that whichever indicator we use, 
reproducing Tully-Fisher relation by theoretical model 
remains a challengeremains a challenge. 



Baryonic Tully-Fisher relation

McGaugh et al. (2000)



Baryonic Tully-Fisher relation



The “extended” BTF

In the extended BTF, the slopeIn the extended BTF, the slope 
becomes shallower from dwarf 
spheroidals, normal galaxies, to 
clusters (clusters: violet symbols, 
giant galaxies: blue symbols, and 
d f h id l d b l )dwarf spheroidals: red symbols). 

⇒ Feedback?⇒ Feedback?

However, this sample does not 

To ard lo er HI masses!

include gas-rich dwarf galaxies. 

(McGaugh et al. 2010)
Toward lower HI masses!



Part II: Evolution of Galaxies



3. Luminosity Function of Galaxies3. Luminosity Function of Galaxies
3.1 Definition and basic properties
3 2 D d f l i i f i i3.2 Dependence of luminosity functions on various 

properties
3 3 E l i f l l i i f i3.3 Evolution of galaxy luminosity function



3.1 Definition and basic properties



Galaxy luminosity function: definition

Definition: number density of galaxies as a function of 
luminosity.

More quantitatively, galaxy luminosity function (L) is 
defined so as to make (L)dL be the number of  galaxies 
with luminosity in an interval [L, L+dL].

N.B. In optical astronomy, absolute magnitude M is 
l d i l t f l i it L I thialways used as an equivalent of luminosity L. In this 

case, its mathematical functional form is different, but 
(very confusingly) expressed with the same symbol as(very confusingly) expressed with the same symbol as 
(M)dM. Also, log L is very often used, again with the 
same symbol (log L)d log L. 



Galaxy luminosity function: Schechter function

Phenomenological fitting function 
to the observed optical luminosity 

L*
function of galaxies, parameterized 
with a, L*, and *.
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Schechter-function related physical quantities

Galaxy number density (number per unit comoving 
volume): 
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Because of the functional form, the integral properties 
are described by Gamma function.are described by Gamma function.



Local galaxy luminosity function: SDSS (optical)

u-band g-band

r bandr-band

i-band z-band

Blanton et al. (2003)



Local galaxy luminosity function: IRAS PSCz (far infrared)

The far-infrared (FIR) galaxy 
LF i ll d ib d b hLF is not well described by the 
Schechter function. Instead, a 
function with much slowerfunction with much slower 
decline at luminous end is used.
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This form is one of the most 
frequently used proposed byfrequently used, proposed by 
Saunders et al. (1990), 
parameterized by L*, *, , and 
.Takeuchi et al. (2003)



3.2 Dependence of luminosity functions on 
various propertiesvarious properties 



Galaxy luminosity function: environmental dependence

Binggeli et al. (1988)



Galaxy luminosity function: morphological type dependence

de Lapparent et al. (2003)



Galaxy luminosity function: spectral type dependence



3.3 Evolution of galaxy luminosity function 



Galaxy luminosity function: evolution: optical

g-band2800Å

G b h l (2004)Gabasch et al. (2004)



Galaxy luminosity function: evolution: UV and FIR

T k hi l (2005)Takeuchi et al. (2005)



4. Chemical Evolution of Galaxies4. Chemical Evolution of Galaxies
4.1 Stellar evolution
4 2 Ch i l l i f l i l4.2 Chemical evolution of galaxies: general 

framework
4 3 E l i h i d l f l i4.3 Evolutionary synthesis model of galaxies
4.4 Star formation history of spiral galaxies
4 5 E l ti f th t t l i i d4.5 Evolution of the total mass, grain size, and 

chemical composition of dust



4.1 Stellar evolution



Stellar evolution: an important ingredient of galaxy evolution

We have seen that galaxies evolve with time in various 
senses Among others the most prominent aspect of galaxysenses. Among others, the most prominent aspect of galaxy 
evolution is that of stellar population and resulting change 
of metallicity, appearing in their colors and spectralof metallicity, appearing in their colors and spectral 
features (lines, breaks, etc.).

The key factor: stellar evolution 



The Life of Stars: basics

The life of stars is determined by their initial mass.

Light stars live long, end with a moderate ejection of gas and 
subsequent cooling.

Heavy stars live short, end with violent explosions and mass 
ejections.



The Life of Stars: basics



Stellar evolution: the Hertzsprung-Russel (HR) diagram

The (theoretical) HR diagram 
represents a relationship between 
the effective temperature and 
luminosity of stars.

(Schaller 1992)( )



Stellar evolution: the Hertzsprung-Russel (HR) diagram

Timescales:
Main sequence lifetimes

91.0 Msun: 9.0×109 yr
2.2 Msun: 5.0×108 yr
15 M : 1 0×107 yr15 Msun: 1.0×107 yr

Giant branch lifetimes
1.0 Msun: 1.0×109 yr
2.2 Msun: 2.8×107 yr

615 Msun: 1.5×106 yr



Observed HR diagram

Messier 3 (M3): 
a globular clustera globular cluster



Life of stars and their nucleosynthesis

H H C+O M Si FH

H

He C+O

H
He C+O

H
He

Mg, Si

C+O

H
He

Mg, Si
Fe

H H

Birth H burning He burning C＋O burning Si burning

107K 108K 3×108K 109K 5×109KTc

Stars produce heavy elements by the nuclear reaction, and 

Birth H burning
(Main sequence)

He burning
(Giant)

C＋O burning Si burning

p y y ,
how far the reaction goes depends on the mass of stars.

Lighter than the Sun

Heavier than the SunHeavier than the Sun



Supply of metals to the interstellar space I: stellar wind

WR124



Supply of metals to the interstellar space II: final stage of stars

S i h i il h S h h d

The death of stars with mass < 8Msun: planetary nebulae (PNe)

Stars with similar masses to the Sun run out the hydrogen 
in the core, change their equilibrium structure and expand, 
and become cool huge stars (red giant branch stars: RGBs)and become cool huge stars (red giant branch stars: RGBs).

After the RGB phase these stars become unstable andAfter the RGB phase, these stars become unstable and 
repeat expansion and contraction (thermal pulse 
asymptotic giant branch stars: TPAGB). Because of 
this pulsation, the outer layer of a star is expelled into 
the interstellar space and forms a gas nebula, called 

l t b l (PN) Th b l d i t thplanetary nebula (PN). The nebulae expand into the 
space and mix with the interstellar medium (ISM), and 
provide heavy elements contained in the gas.provide heavy elements contained in the gas.



Planetary nebula

M57 (Ring Nebula)



Planetary nebula

NGC6543 (Cat’s Eye Nebula)



Supply of metals to the interstellar space II: final stage of stars

The death of stars with mass > 8Msun: Type II supernovae 
(SNe II)

Heavy stars repeat expansion and contraction, change their 
internal structure a few times depending on the mass, and  finally 
start the Si-burning which produces Fe. However, after this 
process, they exhaust their energy source because Fe has the 
hi h t bi di l Th l bhighest binding energy per nucleon. The core loses energy by 
neutrinos, which leads to its contraction. However, this process 
leads to even more neutrino loss, and an inverse -decay relatedleads to even more neutrino loss, and an inverse  decay related 
process accelerates the contraction. Then, finally the core 
contracts with a timescale of 10-3 s and produces an outgoing 
shock, leading a very energetic explosion (Type II supernova: SN 
II). The ejected gas from a star forms a nebula, called a 

t (SNR) Thi l id th ISM ithsupernova remnant (SNR). This also provides the ISM with 
heavy elements.



Heavy elements supplied by SN II



Supernova II remnant

M1 (Crab Nebula) 



Supernova II remnant

N132D (LMC SNR)

Blue: [OI]
Green: [OIII][ ]
Red: [SII]



Supply of metals to the interstellar space II: final stage of stars

A significant fraction of stars are born as binaries

The death of binary stars : Type Ia supernova (SN Ia)

A significant fraction of stars are born as binaries. 
The last stage of such stars are different from that of 
single stars because of mass exchange between them.single stars because of mass exchange between them.

Stars with M < 8Msun end as white dwarfs (WDs). If they 
are single such stars finally have a WD mass below theare single, such stars finally have a WD mass below the 
mass limit above which there is no stable solution 
(Chandrasekhar mass Mcrit ≈ 0.6Msun).(Chandrasekhar mass Mcrit  0.6Msun).  
However, WDs in a binary system can often accrete gas 
from a close companion star. Then, it finally exceeds 
Mcrit and collapses, resulting in a runaway fusion 
reaction: Type Ia supernova (SN Ia). Each SN Ia 
produces Fe of 0 3 1 3 M i e SN Ia is the mostproduces Fe of 0.3-1.3 Msun, i.e., SN Ia is the most 
important source of iron in a galaxy. 



Type Ia supernova: schematic picture of binary mass transfer 



Type Ia supernova: binary evolution



Heavy elements supplied by SN Ia



Supernova Ia remnant

Tycho’s SNR

Ch d iChandra images



Astronomical classification of supernovae

Hydrogen 
absorption lines

SN Ib, Ic, and II have the same physical origin, while Ia does not. 
Thi i di t bi f d t di it i b thThis is disturbing for understanding: it is because the 
classification was made based on the existence of an H envelope.



4.2 Chemical evolution of galaxies: general 
frameworkframework



Chemical evolution of galaxies

Star formation Star formation in 
galaxies is affectedgalaxies is affected 
by the amount of 
heavy elements 

Heavy element production

ISM Stellar evolution
Mass ejection

Stellar winds 

y
which galaxies ever 
produced.

PNe
Supply of heavy 
elements

Heavy element production

Stellar deathMass ejection

elements The history of the 
amount of stars 
f d i l iSNRs formed in galaxies 
is called the star 
formation history

Heavy element production

formation history 
(SFH).



Initial mass function (IMF) of stars

A mass distribution function of stars in their birth is 
referred to as the initial mass function (IMF).

Since the IMF determines the 
ratio between massive and lessratio between massive and less 
massive stars, it plays a crucial 
role in chemical evolution of 
galaxies.

IMF normalization:

(but often normalized with 
number )

(Kroupa 2002)
number. )



Chemical evolution model: basic equations

(baryon)



Chemical evolution model: basic equations

Total gas ejection rate of stars is expressed as

(1)(1)

where 

mt: turnoff mass at time t = lowest mass of stars dying at time t

m – wm: ejected massm wm: ejected mass

t-m(m) (m): birth rate at t-m= death rate at time t

m: main sequence lifetime for a star with mass m

Remnant mass:

(2)

N B H t t l th fi l t f t b tN.B. Here remnant means not only the final stage of stars but 
also normal long-lived stars.



Chemical evolution model: basic equations

Evolution of the metal abundance Z is written as

(3)(3)

where 

EZ: ejection rate of metal(s) from stars (main sequence stars,  
Wolf-Rayet stars, SNe, etc.)

Zf: infalling metals per time

ZM : mass of metal(s) in the gasZMg: mass of metal(s) in the gas.



Chemical evolution model: basic equations

Ejection rate of metals reads

(4)(4)

where

(m – wm )Zt-m(m) : mass of metal(s) which was locked in a star 
of mass m at time t - m(m) and is now ejected at time t,

mpZm: new metal(s) produced by a star of mass m with 
originally formed from gas with metallicity Z.

N B Ansatz in eqs (3) and (4): instantaneous mixing ofN.B. Ansatz in eqs.(3) and (4): instantaneous mixing of 
produced metal(s) with the ISM.



Chemical evolution model: basic equations

Returned mass per mass of stars formed is

(5)(5)

This is independent of star formation rate, thus only valid for 
a single generation of starsa single generation of stars.

Mass of produced metal(s) per remaining stellar mass 
(i l di ll ) i ll d i ld Thi i d(including stellar remnant) is called yield. This is expressed as

(6)



Chemical evolution model: instantaneous recycling 

As a first order approximation, the instantaneous recycling 
approximation is often adopted:

1. massive stars die immediately after their birth and less 
massive stars live forever,,

2. produced elements are instantaneously mixed with the 
ISM, is used.ISM, is used. 

N.B. This is only valid if the SFR is almost constant over a 
ti l f 107 f li ht l t lik O C N Mtimescale of 107 yr for lighter elements like O, C, N, Mg, 
etc.(SN II origin), and of 108-9 yr for heavier elements like 
Fe (SN Ia origin).Fe (SN Ia origin).



Chemical evolution model: instantaneous recycling

If the instantaneous recycling applies, using R and y and 
assuming the IMF is constant with time (meaning R = const.), 
we obtain 

(7)( )

(8)

I i (8) i (4) hInserting eq.(8) into eq.(4), we have

(9)

thusthus

(10)



Chemical evolution model: instantaneous recycling

As for stellar mass, with eq.(7),

(11)(11)

and for gas mass, 

(12)

Then, we haveThen, we have

(13)

These equations are the framework under the instantaneous q
recycling.



Chemical evolution model: analytic solution for a simple case
Closed-box model

Assume we have a closed system containing only gas with zero y g y g
metallicity (not essential) and no stars. 

Since f = e = 0, Mg(t = 0) = M, Ms(t = 0) = 0,f , g( ) , s( ) ,

(14)

(15)

which lead 

(16)(16)

or equivalently

(17)



Chemical evolution model: analytic solution for a simple case

The metallicity of the gas is

(18)(18)

N.B., Z(t) depends only on Mg(t)/M, thus not explicitly on t. 

For a simple estimate we can useFor a simple estimate, we can use

(19)



Chemical evolution model: analytic solution for a simple case

The metallicity of stars can also be obtained as follows.

U d l d b ti th t d thUnder a closed-box assumption, the stars and the gas 
altogether must contain all elements ever produced. Hence

(20)

1 t lli it f t ( ith t t l i t)1: average metallicity of stars (without metals in remnant)

2: metallicity of gas

3: mass of all metals ever produced

4: average values with assumption:4: average values with assumption:



Chemical evolution model: analytic solution for a simple case

Thus, we have

(21)(21)

Integrating eq.(11) leads to

(22)

Combining the above we haveCombining the above, we have

(23)

Finally, we obtain an important result: 

(24)(24)

i.e., the average stellar metallicity cannot exceed the average 
yieldyield.



4.3 Evolutionary synthesis model of galaxies



Stellar spectra and single (simple) stellar population (SSP)

Stars have different spectra depending on their effective 
temperature (often referred to as spectral type) and p ( p yp )
metallicity.

S l ti f t hi h b t thSuppose a population of stars which were born at the same 
moment and with a certain IMF and metallicity. Then, the 
total spectrum of this population at age t is expressed as atotal spectrum of this population at age t is expressed as a 
IMF-weighted sum of the spectra of each stellar mass (
spectral type) with age t after their birth. 

This hypothetical population is called a single stellar 
pop lation (SSP) and pla a f ndamental role inpopulation (SSP), and play a fundamental role in 
theoretical modeling of galaxy spectra. The SSPs vary as a 
function of age, metallicity, and the adopted IMF.function of age, metallicity, and the adopted IMF.



Stellar spectra

Hotter to cooler from 
the top to the bottom.the top to the bottom.



Single stellar population (SSP)

(Bruzual & Charlot 1993)



Evolutionary synthesis of galaxy spectra

Synthesizing isochrones can convolve with arbitrary star 
formation history (Green’s function):

         dfttF
t

tZ 
0 ,

y ( )

(25)0
fλ,Z(t’)(t): an SSP of age t and metallicity Z(t’)
F (t): the spectrum of a population with arbitrary SFR Ψ(t)Fλ(t): the spectrum of a population with arbitrary SFR Ψ(t).

N.B. this assumes time-invariant IMF.

Commonly used is exponentially decaying SFR:

(26)



Evolutionary synthesis of galaxy spectra

The effect of star formation history

BC93 Fig. 4a BC93 Fig. 4d(Bruzual & Charlot 1993)



Evolutionary synthesis of galaxy spectra

The effect of star formation history

BC93 Fig. 4a BC93 Fig. 4d(Bruzual & Charlot 1993)



Evolutionary synthesis of galaxy spectra

Application to ellipticals

• Best-fitting age model and 
composite elliptical spectrum

• Fairly good fit over entire 
spectral range

• Note UV-rising branch, 
highlighting importance of 

t AGB d liaccurate AGB modeling
• Authors admit that these are 

large aperture spectra solarge-aperture spectra, so 
metallicity will be roughly 
solar

(Bruzual & Charlot 1993)



Evolutionary synthesis of galaxy spectra

Application to irregulars

• Note that emission lines will 
never be fit (BC93 models 
only include stars)only include stars)

• Overprediction of flux at 
blue end because of internalblue end, because of internal 
extinction due to dust

(Bruzual & Charlot 1993)



Evolutionary synthesis of galaxy spectra

Application to spirals

(Bruzual & Charlot 1993)



4.4 Star formation history of spiral galaxies



Observed star formation histories

Observationally spiral galaxiesObservationally, spiral galaxies 
have a slowly continuous 
decaying SFH after a short y g
burst. 

From earlier to later types, the o ea e to ate types, t e
timescale of SF becomes longer. 
This trend also holds including 
Es and Irrs: Sandage law. 

(Sandage 1986)(Sandage 1986)



Star formation history in chemical evolution

The star formation history (SFH) plays a central role to 
control the chemical evolution. Though in the simplest model, 
the SFH did not appear explicitly, generally we have to put a 
certain physical model to specify the SFH.

In reality, this part is complicated and still poorly understood, 
we often adopt the following empirical law, referred to as thep g p ,
Schmidt law (Schmidt 1959) or its variant:

(27)21SFR  nn (27)21      SFR  n

N.B. In the observational side, it is expressed as a function of 
surface gas density, and in the chemical evolution modeling, yet 

diff t f i ft da different form is often used.



Application of Schmidt law to chemical evolution

Applying the Schmidt law to the chemical evolution, we 
can reproduce an exponential-type SFH in a self-consistent p p yp
manner (not by hand). 

http://model.galev.org/



4.5 Evolution of the total mass, grain size, and 
composition of dust (Asano Model)composition of dust (Asano Model) 



4.5.1 Chemical evolution of galaxies: metal and dust

The produced heavy elements are not always in a gas state: 
indeed more than a half of the heavy elements form tinyindeed, more than a half of the heavy elements form tiny 
solid grains, called dust. Dust grains are usually suspended 
within the ISM in galaxies.g

Star formation activity is closely related to heavy element 
production. This therefore mean that the star formation is 
also connected to the production of dust.

Hence, intense star formation always accompanies active dust 
production. On the other hand, dust grains also accelerate the p , g
efficiency of star formation. The interplay between the star 
formation and dust is very complex and nonlinear.



Chemical evolution of galaxies: metal and dust

Star formation

Heavy element production

ISM Stellar evolution
Mass ejection

Stellar winds 
PNe

Supply of heavy 
elements

Heavy element production

Stellar deathMass ejection

elements

SNRs Heavy element production



Chemical evolution of galaxies: metal and dust

Star formation
Dust production

Protoplanetary 

Heavy element production

p y
disk

ISM Stellar evolution
Mass ejection

Stellar winds 
Dust

Dust production

PNe
Heavy element production

Cool star atmosphere 
PNeSupply of heavy 

elements

Stellar deathMass ejection Dust production

elements

SNRs Heavy element production SNRs

Blast wave by SNe

Dust destruction

y



4.5.2 Role of dust in galaxies

D st grains are

What are dust grains?

Dust grains are 
・formed by condensation of heavy elements.

Heavy 
l t

Dust grain
elements

Heavy elements are supplied only by stars.y pp y y

・tightly connected to galaxy evolution

There are many important physical quantities 
affected by dust.y



Role of dust for the first star formation

Surface of dust grains

molecular 
f i

molecular 

atom
formation cooling

d t dust coolingdust dust cooling

These processes depend strongly on the amount and sizeThese processes depend strongly on the amount and size 
distribution of dust grains.



Role of dust for the first star formation

Surface of dust grains

on w/ dust grains
fr

ac
tio

w/o dust grainsle
cu

la
r 

M
ol

Hirashita & Ferrara (2002)   

Dust grains drive the star formation.



Spectral energy distribution (SED)

St D t
Dust extinction Dust Re-emission

   

Star Dust

Small Large
   

   
   

  Small Large
Fl

ux
 

Large
absorption emission

Large Small

Noll et al. (2009)log wavelength



Extinction curve

Wavelength dependence of extinction by dust

Fitzpatrick & Massa (2007)



4.5.3 Dust and matter circulation in a galaxy

Galaxy
atoms, 
molecules

destruction
(SN shocks)

grain 
growth

dust

AGB t SN II
shattering

AGB stars, SNe II

astration

coagulation



Dust supply

AGB stars
Log normal distrib tion
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Log-normal distribution
Large size grains are produced

Winters et al. (1997)
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Dust mass data

i i [ ]G d

Zhukovska et al. (2008)

Type II Supernovae (SNe II)

grain size [cm]

Type II Supernovae (SNe II)

e io
nBroken power-law

Biased to large grains

ra
in

 si
z

st
ri

bu
tiased to a ge g a s

Nozawa et al. (2007)
Dust mass data

grain size [cm]
G

r
di

sust ass data
Nozawa et al. (2007)



1 0
Dust destruction and grain growth

Dust destruction by SN shocks
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m
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0.01μmSmaller grains are mainly  
destroyed by SN shocks.

Nozawa et al. (2006)
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Shattering and coagulation (driven by ISM turbulence)

Shattering Coagulation
S ll i d d L i d dSmaller grains are produced 
by larger grains

Larger grains are produced 
by smaller grains
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4.5.4 Evolution of the Total Dust Amount 

Evolution of the total stellar mass, M* , ISM mass, MISM, 
metal mass, MZ, dust mass, Md in a galaxymetal mass, MZ, dust mass, Md in a galaxy



4.5.4 Evolution of the Total Dust Amount 

Evolution of the total stellar mass, M* , ISM mass, MISM, 
metal mass, MZ, dust mass, Md in a galaxymetal mass, MZ, dust mass, Md in a galaxy

・Injection/ejection from stars
・Destruction by SN shocksy
・Grain growth in the ISM



Dust-to-gas mass ratio

Nozawa et al. (2015)



Critical metallicity for grain growth
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Critical metallicity for grain growth
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Evolutionary tracks of the dust-to-gas mass ratio are unified 
by using Z/Zcrit. Metallicity tuned out to be fundamental for 
dust evolution (Asano et al. 2013a). 



Application to the observed data 

Herschel observation

Rémy-Ruyer et al. (2014)



4.5.5 Evolution of Dust Grain Size Distribution

Asano et al. (2013b)

・Closed-box model 
(total baryon mass is a constant)
・Two-phase ISM (WNM and CNM)
・Schmidt law : SFR(t) = MISM(t)/τSF

・Dust formation by SNe II and AGB stars
・Dust reduction through the astration
・Dust destruction by SN shocks in the ISM

G i th i th CNM・Grain growth in the CNM 
・Grain-grain collisions  (shattering and coagulation) 

in the ISM (mass-preserving processes)in the ISM (mass preserving processes)



4.5.5 Evolution of Dust Grain Size Distribution

Asano et al. (2013b)

・Closed-box model 
(total baryon mass is a constant) This determines the 

SFH!・Two-phase ISM (WNM and CNM)
・Schmidt law : SFR(t) = MISM(t)/τSF

SFH! 

⇒ To be improved.  

・Dust formation by SNe II and AGB stars

p

・Dust reduction through the astration
・Dust destruction by SN shocks in the ISM

G i th i th CNM・Grain growth in the CNM 
・Grain-grain collisions  (shattering and coagulation) 

in the ISM (mass-preserving processes)in the ISM (mass preserving processes)



Formulation of the grain-size dependent evolution of dust mass

Md (a, t) = m(a)f(a, t)da : dust mass with a grain radius [a, a+da] 
at a galactic age tat a galactic age t

)()(SFR Y ),()(SFR d taYt  Stellar effects

Destruction 
by SN shocks

Grain growthGrain growth

ShatteringShattering

CoagulationCoagulation



Evolution of the grain size distribution

[m][ ]



4.5.6 Evolution of Extinction Curve

Extinction = absorption + scattering by dust grains

Extinction in unit of magnitude at a wavelength: Aλ

λ: wavelength
Aλ = 1.086 Σ τj,λj

g
a : radius of a grain
j : grain species

Optical constant: 
graphite and astronomical silicate (Mg1. Fe0.9 SiO4 )

Grain size distribution:
Draine & Lee (1984)

Evolution model of grain size distributionEvolution model of grain size distribution
Asano et al. (2013b)



Evolution of the extinction curve in galaxies



Part III: Formation of 
Structures and Galaxies



5. Structure Formation I5. Structure Formation I
5.1 Structure formation: fundamentals
5 2 Li h5.2 Linear theory



5.2 Structure formation: fundamentals



From structure formation to galaxy formation

Input of the Harrison-Zel’dovich spectrum

D f ti f th l fDeformation of the power-law form

Initial fluctuation

Gravitational instability

Growth of inhomogeneity (dark matter)Growth of inhomogeneity (dark matter)

Linear growth: large-scale structure

Nonlinear growth: clusters, galaxies

Dark halo formationDark halo formation

Physics of baryons

Star formation and galaxy formation



Characterization of fluctuation

Density fluctuation:                                                               (14)

Dispersion:                                                                             (15)

Fourier component:                                                              (16)

P (17)Power spectrum:                                                                   (17)

Higher-order power spectra (bispectrum 3-pointHigher-order power spectra (bispectrum  3-point 
correlation function; trispectrum  4-point correlation 
function) are also defined. 

In general, a set of infinite number of moments (or their 
Fourier counterparts) are needed to specify the properties p ) p y p p
of a stochastic field.



Gaussian random field
Gaussian random field is a 
stochastic field whose 
di t ib ti i d ib d bdistribution is described by 
Gaussian and its Fourier 
phases have no correlation.phases have  no correlation.

(18)

All the stochastic properties of a field is uniquely characterized 
by the power spectrum P(k) for Gaussian random fieldsby the power spectrum P(k) for Gaussian random fields. 

Observationally, density fluctuation in the Universe can 
be regarded as (almost) Gaussian.



Initial fluctuation: Harrison-Zel’dovich spectrum

A power-law form P(k) ∝ kn for the initial power spectrum 
has been propounded from heuristic requirements to the 
structure formation in the Universe. The case with n=1 is 
especially called Harrison-Zel’dovich spectrum (Harrison 
1970 Z l’d i h 1972)1970; Zel’dovich 1972).

k)
lo

g 
P(

k
l

log (k)log (k)



Inflation

Inflation: exponential expansion of the Universe before the 
Big Bang fireball

It has appeared on the scene 
of cosmology as a theory to gy y
solve the flatness and horizon 
problem, as well as to provide 
initial fluctuation of the 
cosmic structure (Guth 1981;  
Sato 1981)Sato 1981). 

Inflation produces a (nearly) 
G i fl t ti ithGaussian fluctuation with a 
power spectrum of P(k) ∝ k.

N.B. Not exact in a modern 
framework. (Guth & Kaiser 2005)



Deformation of the Harrison-Zel’dovich spectrum
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Growth rate of a density perturbation depends on the epoch (i.e. 
i i iwhat component dominates global expansion dynamics at that 

time), and whether a perturbation is super- or subhorizon.



Deformation of the initial spectrum

Radiation dominant epoch: when the initial power 
spectrum enters the horizon (L = ct)(the horizon expandsspectrum enters the horizon (LH  ct)(the horizon expands 
to the scale of fluctuation), fluctuations can grow little 
because photons sweep out all the fluctuations of dark p p
matter (Mészáros effect; stagspansion). 

Since fluctuations larger than the horizon can grow, the 
power spectrum bents at the horizon scale of the epoch 
and de iates from a single po er la The scale of theand deviates from a single power-law. The scale of the 
bent is

(18)(18)



Caution to the superhorizon-scale fluctuation

N.B. Fluctuations larger than the horizon should be treated 
fully relativistically but because of the large degree offully relativistically, but because of the large degree of 
freedom of coordinate transformation in general relativity, 
the form of fluctuation cannot be determined uniquely: for q y
example, we can always take a coordinate system in which 
fluctuations vanish completely. 

It is popular now to use the gauge-invariant formulation 
(Bardeen 1980; Kodama & Sasaki 1984). 



Transfer function

A power spectrum at a certain time t can be described 
as the initial power spectrum × deformation. This 
deformation part is called the transfer function. 

In the case of CDM since only the stagspansion isIn the case of CDM, since only the stagspansion is 
the cause of the deformation, then we can write as

(19)

Hence, the power spectrum is expressed as

(20)



Transfer functions for various kind of matter

(Peacock 1993)



Typical power spectrum with CDM and baryon

Peak ∝Peak ∝m

P(k) ∝ k Wiggle caused by the 
baryon acoustic oscillationbaryon acoustic oscillation

P(k) ∝ k-3( )



The cosmic microwave background radiation (CMB)

WMAP 5 year data

http://map.gsfc.nasa.gov/m_mm.html

WMAP 5 year data 



The cosmic microwave background radiation (CMB)

Planck first data
http://www.rssd.esa.int/index.php?project=Planck

Planck first data 



The cosmic microwave background radiation (CMB)

• T = 2.725 ±0.002 K.
• The  most perfect blackbody in the Universe.p y
• Rayleigh-Jeans tail at the cm regime, and the peak 

locates around 2 mm.
• Fluctuation T/T~ 10-5. 
• This fluctuation is the line-of-sight integrated initial g g

fluctuations which, in principle, contain the full 
information of the initial power spectrum when the 

h d (if h fl istructures have started to grow (if the fluctuations are 
adiabatic). 
H b f h i l th• However, because of numerous physical processes, the 
power spectrum is somewhat deformed especially at 
higher k (small scale) regime.higher k (small scale) regime.



Recombination

The Big-Bang fireball: plasma

PhotonsPhotons

Nuclei Free electrons

Photons cannot penetrate plasma because of the Thomson 
scattering by free electrons. 



Recombination

380 Myr after the birth of the Universe, matter turns 
from plasma into atoms. p

Bound electrons

Neutral atoms do not scatter light and photons can go 
straight in the Universe. 



The last scattering surface

When the matter turns neutral (neutralization), the 
Universe becomes transparent against photons. The 
photons scattered in the last moment of plasma era (the 
last scattering surface: LSS) are observed as the CMB. 

Plasma Neutral gas



Energy spectrum of the CMB



CMB power spectrum: spherical harmonics

The CMB fluctuations are usually expressed in terms of 
spherical harmonics:p

(21)
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
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with the angular power spectrum being then defined as 
follows:
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To have an intuitive idea about ℓ,  it is useful to write 
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CMB power spectrum: origins of fluctuations

Acoustic oscillations (in the (
primordial plasma before 
recombination on the scales 
comparable to the horizon 
i )size then)

Large scale plateau 
(super-horizon scales) D i t il(super horizon scales) Damping tail



5.3 Linear theory



Schematic view of the evolution of the CDM power spectrum
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Linear regime
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Linear theory: Jeans mass of the cosmic structures
We first adopt the Newtonian fluid approximation, which is 
valid for slowly moving matter in a range much smaller than 
th h i U d thi ti hthe horizon. Under this assumption, we have
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Equations (1) – (3) are written in physical coordinates.

 G42 

Equations (1) (3) are written in physical coordinates. 



Linear theory: Jeans mass of the cosmic structures
We introduce comoving coordinates so that we treat structure 
formation in the expanding universe.
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Here     is a peculiar velocity. 

Further, we obtain for the differential operators: 
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Hereafter, we drop the subscript x.
a



Linear theory: Jeans mass of the cosmic structures
By changing the coordinates from physical to comoving, we 
have the continuity equation [eq. (27)]
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and Euler equation [eq. (28)]

By defining a new potential
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Derivation of eq. (34)
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Derivation of eq. (35)
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Linear theory: Jeans mass of the cosmic structures
The Poisson equation [eq. (29)] leads

(38) 22 4 Ga ( )

From the Friedmann equation [eq. (5)], we have
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Linear theory: Jeans mass of the cosmic structures
Consider a small fluctuation from the background universe:
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We introduce fluctuations from the homogeneous 
background as
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Linear theory: Jeans mass of the cosmic structures
The continuity equation [eq. (34)] leads
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Linear theory: Jeans mass of the cosmic structures
Thus, the continuity equation [eq. (34)]  becomes
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and the Euler equation [eq. (36)] 
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Equations (44) (48) and (49) are the startpoint to derive the
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Equations (44), (48), and (49) are the startpoint to derive the 
solutions which describe the linear growth of fluctuations.



Linear theory: Jeans mass of the cosmic structures
Here, we neglect terms including multiplications of  , p, 
and     since they are small (linearization). u

Then the continuity equation [eq. (34)] and the Euler equation 
now read

1 01



 u

at
 (50)

  01











a
p

a
uH

t
u 


(51)

Then, manipulating eqs. (50) and (51) gives
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Linear theory: Jeans mass of the cosmic structures
Performing an algebra eq. (52) – eq. (51)/a gives
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Here S is the entropy. Suppose that the entropy fluctuation is 
small, we have
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Linear theory: Jeans mass of the cosmic structures
Since the basic equations are linear, we can deal with Fourier 
components for each k. Consider
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Linear theory: Jeans mass of the cosmic structures
The third term in [    ] controls the evolution of fluctuation.

1. <0

Fluctuations oscillate and decay. This happens when cs is 
large. This also happens when k is large (small scale)large. This also happens when k is large (small scale) 
because the fluctuation does not contain enough mass to 
contract gravitationally.

2. >0

Fluctuations growFluctuations grow. 



Linear theory: Jeans mass of the cosmic structures
Here we define kJ so that
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then we can also define the Jeans length J:
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Fluctuation smaller than J decay, while ones larger than J
can grow by gravitational instability.
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is referred to as the Jeans mass.



Linear theory: superhorizon-scale (DM or baryons)
Fully relativistic treatment is required. Here we do not go 
deeper into the discussion.
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Linear theory: growth of fluctuations for DM I
The evolution of the Universe is governed by the energy 
density through eqs. (4) and (5). In the early Universe, 

di ti d i t th d it ( di ti d i t dradiation dominates the energy density (radiation-dominated: 
RD), while later matter dominates (matter-dominated: MD).

Consider the evolution of fluctuations of DM. DM is thought 
to be pressureless. Then, eq. (54) or (58) becomes (since they 
are linear, real or Fourier space treatment does not differ)
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Linear theory: growth of fluctuations for DM I
Assume a solution with the form 
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Then, eq. (63) is solved with a general solution
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The second term is a decaying mode and can be neglected at 
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Defining the growth factor D(t), eq. (66) is also expressed as

(67)32)()(D (67)32)()( ttatD 



Linear theory: growth of fluctuations for DM II (stagspansion)
As outlined above, during the RD era, the DM fluctuations are 
suppressed within the horizon size (stagspansion).
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Here subscript M and R denotes matter and radiation. We also 
define

M a


 (70)

(aeq: scale factor at the matter-radiation equality). Then we 

eqR a


q
have

0
)1(2

3
)1(2

32 MM
2
M

2



























(71)
)1(2)1(2  



Linear theory: growth of fluctuations for DM II (stagspansion)
By assuming
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we find a solution of the form  
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MD:  >> 1
(74)aM

RD:  << 1
constant (75)

(more precisely, M ∝ln a).

constantM  (75)

Thus, we could see quantitatively the effect of stagspansion.



Linear theory: subhorizon-scale (DM, radiation-dominated)
Jeans analysis can be applied. Dark matter is pressureless, 
but during the period in which DM particles couple with 
photons radiation press re orks as the effecti e press rephotons, radiation pressure works as the effective pressure 
of DM. Then subhorizon-size fluctuations cannot grow.
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Linear theory: subhorizon-scale (DM, matter-dominated)
Dark hatter becomes decoupled from radiation, and 
subhorizon-size fluctuations start to grow. At early epoch, 
the Uni erse can be appro imated as Einstein de Sitter

The mean density evolves as 
the Universe can be approximated as Einstein-de Sitter.
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Linear theory: growth of fluctuations for baryons
For baryon fluctuations, gravitational potentials are made by 
DM:

(76)042 BB
2   GH

where subscript B denotes baryons. If we define               ,  

(76)042 MM
B

2
B 






  G

t
H

t
a

p y ,

 M (77)
reca



Then we have

(78)B2321 3




 dd

Th l ti i

(78)M
B2321

2






 








dd

The solution is

(79)MB
11  








 







Linear theory: growth of fluctuations for baryons
This solution means that

: 1dec  aa
(80)B 0 
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This means that just after the decoupling, there is no 
fluctuation in baryons, but later ( >> 1), they have the same 
fluctuation as DM. This is called catch-up.fluctuation as DM. This is called catch up.



Linear theory: baryon acoustic oscillation

Before decoupling, radiation pressure from the photons 
resists the gravitational compression of the baryon fluid into 
potential wells and sets up acoustic oscillations in the fluid 

Springs represent photon 
pressure and balls represent 
the effective mass of the fluidthe effective mass of the fluid.

Th h t th l th f th t ti l fl t ti thThe shorter the wavelength of the potential fluctuation, the 
faster the fluid oscillates such that at last scattering the 
phase of the oscillation reached scales with the wavelength.phase of the oscillation reached scales with the wavelength. 
Since compressed regions (maxima) represent hot regions 
and  expanding regions (minima) cold regions, there will be 
a harmonic series of peaks in wavelength associated with 
the acoustic oscillations. 



Linear theory: baryon acoustic oscillation

The strongest and the most important structures in the CMB 
spectrum result from the acoustic oscillation.spectrum result from the acoustic oscillation.



Linear theory: Silk damping (diffusion damping)

In reality, the coupling between baryons (electrons) and 
photons is imperfect since the photons possess a mean 
free path to Compton scattering. 

As the photons random walk through the baryons, hot 
and cold regions are mixed. Fluctuations damp nearly 

ti ll th diff i l th t k thexponentially as the diffusion length overtakes the 
wavelength. This is called Silk damping.



Linear theory: Silk damping (diffusion damping)

At last scattering, the ionization fraction decreases due to 
recombination, thus increasing the mean free path of the 
photons. The effective diffusion scale becomes the thickness 
of the last scattering surface providing a cut off in the 

i t tanisotropy spectrum. 

Hu & White (1997) 



Linear theory: summary of the growth of baryon perturbations
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Linear theory: schematic summary of fluctuation growth



6. Structure Formation II6. Structure Formation II
6.1 Nonlinear theory: Press-Schechter formalism
6 2 Bi6.2 Bias



6.1 Nonlinear theory: Press-Schechter formalism



Spherical collapse model: concept

In comoving coordinates a sphere, centered on a local 
overdensity shrinks in time; Hubble expansion is getting 
retarded by the overdensity. At some point, the sphere’s 
expansion stops (turn-around), and the sphere starts to 

llcollapse.

Hubble expansion

rrm

local overdensity

Time



Spherical collapse model: concept

Physical coordinate



Spherical collapse model
C id h l i f h i l d i iConsider the evolution of a spherical overdensity region as 
a simple model of the nonlinear evolution of fluctuation. 
(Tomita 1969; Gunn & Gott 1972)(Tomita 1969; Gunn & Gott 1972). 

R(t) “Energy” E < 0: bounded(t)

C: integration constant

t

C: integration constant, 
corresponding to the size of the shell. 
This curve is called “cycloid”. 

N.B. “Energy” E > 0: unbounded. Corresponding to voids. 



Spherical collapse model
Densities of overdense and average regions are

expansion ⇒ contraction (turn-around)

2collapse (R = 0)



Spherical collapse model

In reality, R = 0 is not established, but the overdense 
region becomes an object with Rvir, via some mechanism g j vir,
like the violent relaxation. Suppose a mass M, then from 
the conservation of energy, we have

hence

2‐ 1 = 182 -1 ≈ 177 (1)



Spherical collapse model

Correspondence with a linear regime
At early phase, the growth is the same as the linear 
growth. Expanding with , we have

Let it L, 

Since both the nonlinear of spherical collapse and linear L 
are monotonic functions of t we can estimate the value of 

(2)

are monotonic functions of t,  we can estimate the value of 
from L if we have a relation between and L. 

(2)

Thus, we regard a region with  = 1.69 as a collapsed object. 



Spherical collapse model



Spherical collapse model

Above discussion was based on the Einstein-de Sitter 
Universe. In the case of the flat -dominated 
Universe, L becomes as follows (Nakamura & Suto 
1997). 

(F h t i f ti )(F: hypergeometric function )



Press-Schechter (PS) formalism

Press & Schechter (1974)

Linear growth solution of density fluctuation＋Linear growth solution of density fluctuation＋
extrapolation to the nonlinear regime through a spherical 
collapse model ⇒ An analytic model of halo formation

Let the number density of objects whose mass is between 
M and M+dM be n(M)dM. Then, this n(M) is called the 
mass function. PS formalism gives an analytic solution of 

(M)n(M). 

The smoothed (averaged) overdensity in a sphere whose 
radius R corresponding to the mass M is called aradius R corresponding to the mass M is called a 
fluctuation M of mass scale M. 



Press-Schechter (PS) formalism

Original fluctuation : Gaussian 

⇒ Smoothed fluctuation  : Gaussian⇒ Smoothed fluctuation M: Gaussian

(3)

((M)2: variance of dM)

( )

At a certain point, if the linear M exceeds the threshold 
value c, a collapsed object with mass M is formed. We set 
c = coll = 1.69 as the spherical collapse model. 

N.B. Recently, a number of theoretical studies adopt more 
complicated form for c, reflecting more realistic physical 
conditions. 



Press-Schechter (PS) formalism

The spatial fraction of the regions with  > c is 

The amount of matter involved in an object with mass > M

(4)

The amount of matter involved in an object with mass > M
per unit volume is 

(5)(5)



Press-Schechter (PS) formalism
Th di i b i d h ibili hThe discussion above ignored the possibility that a once 
collapsed object would be involved in a larger object
(cloud-in-cloud problem)(cloud-in-cloud problem). 

And the region with < 0 will never be involved in any 
collapsed object (i e P(>  ) 1/2 as (M) ∞) Thencollapsed object (i.e., P(> c) →1/2 as (M) →∞). Then, 
simply we multiply a factor 2 to avoid the problem. 

(6)

Hence

(6)

(7)

When                                          , 

(8)



Press-Schechter (PS) formalism

The Schechter function, often used as an approximation 
form of galaxy luminosity function was originally inspired 
from the PS mass function. 

However, the original formulation by Press & Schechter oweve , e o g o u o by ess & Sc ec e
contains many insufficient assumption as a mature theoretical 
framework. 

The current main stream of the mass function formulation is to 
derive the PS mass function by modeling the merging of  galaxy 
halos (extended PS formalism: e.g., Lacey & Cole 1993).

Since this framework itself gives a formula which better fits the 
N-body simulation results, purely theoretical attempts to aim at 
better understanding of the physics of halo formation is in 
progress(e.g., Nagashima 2001).



Press-Schechter mass function with cosmic time

Time

(Longair 2007)



6.2 Bias



Basic concept of bias: why is it needed?

Observational fact: clusters of galaxies are more strongly 
clustered than galaxies.

(Borgani & Guzzo 2001)



Peak model and halo bias

Basic assumption: when fluctuations smoothed with a 
certain scale R, R, exceed a threshold c, they start to grow 
nonlinearly and form objects (dark halos). 

(Peacock 1999)

Fluctuations which are on a larger spatial scale fluctuation 

(Peacock 1999)

(dashed line) are easier to exceed the threshold. 

The distribution of dark halos is more localized 
than the dark matter: halo bias



Peak model and halo bias

Consider a density fluctuation field:

( )x  : density fluctuation field with a zero mean and 
dispersion 2.

: correlation function of the density field .

: correlation function of density peaks which lie

( )r

)(r : correlation function of density peaks which lie 
above a threshold 

)(r

is defined as a fractional probability that 2 ≡ (x2) 
> given that (x1) > , where                  .21 rrr 


)(r



Peak model and halo bias

If  is a Gaussian random field, the probability P1 such that 
 >  at x1 is expressed as
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Peak model and halo bias

P
Using P1 and P2, the correlation of the high-peak regions is 
defined as

2
1

2)(1
P
Pr   (11)

To calculate this quantity, we should perform some 
arithmetic: define y =  dy = d then we have
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Peak model and halo bias

And since (0) = y1 = 1, and y2 = 2, we obtain 
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Peak model and halo bias

)0()(
2



  r

By using eqs. (12) and (13), we get 

 
2

2

2
2

)0()(12
)0()(erfc

2
 





























d
r

re

P
P (14)
1

2
erfc 














 P

Equation (14) is approximated in extreme cases as follows:
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Equation (16) is the high-peak bias formula derived by Kaiser 
(1984).



Galaxy bias and galaxy formation

From eq. (16), the larger c is, the more strongly the density 
enhancement localizes, i.e., the fluctuation becomes stronger.

Baryon gas cools and falls onto the halo potential well and 
contract to form galaxies.g

Galaxies are more localized within halos: galaxy bias

Galaxy bias depends on the physics of galaxy formation (and 
i i i i i ievolution); it differs depending on the population of galaxies 

(red and blue galaxies, luminous and less luminous, massive 
and less massive optical and IR etc )and less massive, optical and IR, etc.). 

These characteristics are clearly reflected to the luminosity 
function and correlation functions of galaxies.



Halo mass function and luminosity function

Halo mass function and galaxy luminosity function are very 
different in their shapes.

Related to the physics of 
galaxy formationgalaxy formation

(Somerville & Primack 1999)



Clustering dependence on color (or equivalently, spectral type)

Bluer galaxies are less 
clustered than the whole 
pop lation hile redderpopulation, while redder 
ones are more strongly 
clustered than the whole.clustered than the whole.

Thought to be related to 
the peak bias, since redder p ,
galaxies are believed to 
have formed in high-

(Zehavi et al. 2005)
peaks.



Clustering dependence on luminosity

Th l iThe more luminous 
galaxies are, the more 
strongly clustered theystrongly clustered they 
become.

Also thought to be 
related to the peak bias.

(Zehavi et al. 2005)



Clustering dependence on luminosity: evolution with redshifts

z < 0.5 0.5 < z < 1.2z

(P ll t l 2006)(Pollo et al. 2006)



Clustering dependence on wavelength (optical and IR)

(L h t l 1990)(Lahav et al. 1990)
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7.1 Physics of galaxy formation



Halo mass function and luminosity function
Th f i l f f h h l f i d lThe functional forms of the halo mass function and galaxy 
luminosity function are significantly different.

Related to the physics of 
galaxy formationgalaxy formation

Somerville & Primack (1999)



Physics of galaxy formation

Halo ⇒ galaxies

Dark halo: purely gravitational

⇒ d namical e ol tion merging⇒ dynamical evolution, merging

Baryons: hydrodynamics, electrodynamics, etc.

⇒ cooling

star formationstar formation

chemical evolution, formation of dust

feedbacks

blackhole formation, AGN formationblackhole formation, AGN formation



Merging

Dark halos of CDM form from smaller masses, and grow 
with time via merging and mass accretion to form largerwith time via merging and mass accretion to form larger 
mass objects: hierarchical structure formation

(e g Searle & Zinn 1978)(e.g., Searle & Zinn 1978)

A scenario to form a large g
object at once from the 
beginning: 

monolithic formation

(e g Eggen et al 1962)

Lacey &Cole (1993)

(e.g., Eggen et al. 1962)



Baryon cooling

When halos collapse or merge, a shock wave is generated in 
baryonic matter and the gas will be heated. 

H t l th t f l i ?How to cool the gas to form galaxies?

Why do galaxies have only masses  1012 M while thereWhy do galaxies have only masses  10 Msun, while there 
are halos with masses of 1015 Msun (clusters of galaxies)?

The gas temperature is typically an order of virial temperature

Galaxies: T ~ 104-5 K, clusters: T > 107 K ( 1 keV)



Cooling function
Cooling function  is a function of temperature and 
metallicity (see Sutherland & Dopita 1993). 

A i i

Bremsstrahlung

Atomic lines

Maio et al. (2007)Molecular lines



Baryon cooling: why there is no galaxies with M > 1013 M☉

1011M☉ halo with gas cooled 1014M☉ halo with gas not cooled



Cooling time of cosmic objects

We can estimate the cooling time tcool of a clump of baryonic 
gas by using the cooling function. Let n be the gas number 
density, we have

The dynamical time tdyn of an object is estimated by the free-
fall time, 

Rees & Ostriker (1977)( )

tcool << tdyn: baryons fall onto the halo center with a 
timescale of td before feeling the pressure generated bytimescale of tdyn before feeling the pressure generated by 
shock heating.

t >> t : baryons are supported by the pressure andtcool >> tdyn: baryons are supported by the pressure and 
dissipate their energy quasistatically. 



Cooling time of cosmic objects
tcool = tdyn

Clusters

1012 Msun108

C li k

109 Msun

S
E106

Cooling works 106 MsunIrr104

Rees & Ostriker (1977)



Cooling time of cosmic objects

Cooling time explains this difference

Somerville & Primack (1999)



Cooling time of cosmic objects: recent progress

The above discussion is a well-established concept to explain 
the lack of galaxies with M ~ 1015 M☉ galaxies. 

Ho e er this is basicall a one one arg ment RecentHowever, this is basically a one-zone argument. Recent 
studies revealed that the gas cools efficiently at the center of 
clusters of galaxies if we consider the density profile properly.clusters of galaxies if we consider the density profile properly.



Cooling time of cosmic objects: recent progress

The above discussion is a well-established concept to explain 
the lack of galaxies with M ~ 1015 M☉ galaxies. 

Ho e er this is basicall a one one arg ment RecentHowever, this is basically a one-zone argument. Recent 
studies revealed that the gas cools efficiently at the center of 
clusters of galaxies if we consider the density profile properly.clusters of galaxies if we consider the density profile properly.

Overcooling problem has revived!

People are trying to solve the problem by the feedback effect 
from AGNs at the center of clusters, but it remains a matter ,
of strong debate yet. 



Star formation in galaxies

Gas cooled and fallen onto the halo center starts to be 
fragmented and contract, to form stars finally. 

Jeans instability

h drod namic instabilitieshydrodynamic instabilities

magnetohydrodynamic instabilities etc.

In order to understand the physics of galaxy formation, we need 
to understand the formation process of first stars (Population 
III; Pop III). However, it is still poorly understood theoretically, 
and onl phenomenological methodolog ass ming properties ofand only phenomenological methodology assuming properties of 
local galaxies is adopted (e.g., semi-analytic models). 



Dust formation

Most of galaxy formation and evolution models adopt 
oversimplified assumptions, e.g., the properties of dust 
extinction to be the same as those of the Milky Way. 

Stellar species which supply dust change with galaxy p pp y g g y
evolution, from supernovae, novae, AGBs and RGBs (and 
planetary nebulae). There exist very few models which 
include the evolution of the source of dust supply, and even 
existing models are quite premature (e.g., Takeuchi et al. 
2003 2005; Asano et al 2013a b 2014; Nozawa et al 2015)2003, 2005; Asano et al. 2013a, b, 2014; Nozawa et al. 2015). 



Feedback

Star formation ⇒ supernova ⇒ galactic wind

Supernovae heat the ISM and blow away the gasSupernovae heat the ISM, and blow away the gas 
mechanically, and destroy molecular clouds by shocks. 

Reduction of star formation activity 

Since supernovae are originated from massive stars, the 
timescale is short (106-7yr). ( y )

Supernova rate∝star formation rate

M bl i l d h h iMany problems remain unsolved, e.g., how much energy is 
given to the ISM. The same as for AGN feedbacks (Dekel & 
Silk 1986; Mac Low & Ferrara 1999; Ferrara & TolstoySilk 1986; Mac Low & Ferrara 1999; Ferrara & Tolstoy 
2000; Veilleux et al. 2005; NcNamara & Nulsen 2007). 



Feedback

Veilleux et al. (2005)



Feedback

Supernova feedback explains this difference?? 

Somerville & Primack (1999)



7.2 Formation of Population III stars



Basic properties of Population III stars

Population III

1 First stars formed from metal free gas1. First stars formed from metal-free gas

2. Forms from the cosmological initial condition (no 
t ll f db k)stellar feedback)

N B Some people call simply extremely metal poorN.B., Some people call simply extremely metal-poor 
stars Pop III (e.g., Z ~ 1/10000Z☉). 

Since metal-free gas cannot contract with metal line cooling, 
it is very difficult for them to collapse. y p

Cooling can proceed only via line emission s of hydrogenCooling can proceed only via line emission s of hydrogen 
molecules (H2, HD)(e.g., Nishi et al. 1998). 



Formation of molecular hydrogen in a gas phase
F i f H d HD i hFormation of H2 and HD in a gas phase:

Universe just after the recombination：ionized fraction ~ 10-4j

H0 + e- → H- + 
Basic reactions:

H- + H0 → H2 + e-
Basic reactions:

These reactions proceed with electrons being a catalystThese reactions proceed with electrons being a catalyst. 
In the Universe after recombination, molecular hydrogen 
formation starts via relic electrons after the Big-Bang. To g g
be precise, some tens of reactions proceed simultaneously 
in a very complicated way (e.g., Galli & Palla 1998). 
Cf. In the ISM with a metallicity similar to solar, as the 
MW,  H2 formation proceed with dust surface as a 
catalyst. The H2 formation on dust grains is more than 
100 times more efficient than that in a gas phase. 



Reaction network in the pregalactic era

Galli & Palla (1998)



First collapse of Pop III

2. Fragmentation of the first 
objects

1. Formation of the first object

2. Collapse of dense cores: 
formation of  protostar

3. Accretion of ambient gas and
relaxation to main sequence star



Formation of the first object (minihalo)

At z = 20-30, 3-4 peaks of 
dark matter collapse to form 
minihalos (Mhalo ~ 106 M☉ and 
the Tvir ~ 103 K). These 
minihalos are the site of theminihalos are the site of the 
first star formation.

Since minihalos are predicted 
to be strongly clustered (halo 
bias), the feedback from the 
first star is very important in 
determining the state of

Bromm et al. (2009)

determining the state of 
surrounding gas clouds.



Formation of the first object (minihalo) II

The number of stars formed 
in a minihalo cannot be veryin a minihalo cannot be very 
large (one or a few at most), 
because the strong UV field g
dissociates the molecules 
around the first star (e.g., 
O k i & Ni hi 1999)Omukai & Nishi 1999). 

A Minihalo cannot form a

Bromm et al. (2009)

A Minihalo cannot form a 
galaxy.



Runaway collapse of dense cores: formation of a protostar

Primordial gas clouds undergo runaway collapse when 
sufficient mass is accumulated at the center of a minihalo. 
The minimal mass at the onset of collapse is determined 
by the Jeans mass   

2
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Typical fragmentation mass is ~ a few × 102-103 M☉.

The Jeans mass only gives an estimate of the stars formed. 
Standard star formation scenario predicts that a tiny 
protostar forms first and subsequently grows by accreting 
the surrounding gas.the surrounding gas.



Properties of the accretion to Pop III stars

1. High accretion rate: for a zero-metal gas with T ~ 
300300 K, 

1-
sun

3
s yrM 01.0001.02

3

 T
G
cM

(Stahler, Shu, & Taam 1980)
G

⇒shorter formation timescale. 

Cf f d f i (P I)Cf. for a present-day star formation (Pop I),
-1

sun
56 yrM 1010  M

2. Low opacity of accreted matter because of no dust

⇒weak radiative feedback  from the accreting star.



Protostellar evolution of Pop III stars with accretion

1
sun

3 yrM101.1 ,2.2 ,4.4 ,8.8 M su

Omukai & Palla (2003)



Protostellar evolution of Pop III stars with accretion

1. Adiabatic phase. A protostar expands gradually. 



Protostellar evolution of Pop III stars with accretion

2. Kelvin-Helmholtz contraction phase. The gravitational 
attraction stops the expansion and contracts toward a main-
sequence radius. 



Protostellar evolution of Pop III stars with accretion

3a. Contraction proceeds and a protostar reaches the zero-age 
main sequence (ZAMS) phase. 3b. Radiation pressure causes a 
sudden expansion and the outer layer is blown away. 



Protostellar evolution of Pop III stars with accretion

1. Owing to the fast accretion, the star becomes massive 
before H burning (H burning via CN cycle starts atbefore H burning (H burning via CN cycle starts at 
40-100M☉).

2. Accretion continues if  the accretion rate is

1
sun

3
crit yrM104  MM 

3. no stationary solution for  > 100M☉ if the accretion 
rate israte  is

1
sun

3
crit yrM104  MM 

Omukai & Palla (2003)



Mass of Pop III stars

 f db kf* min MtMMM  

The mass of a Pop III star is determined by 

 feedbackOBfrag* ,,min MtMMM 

where
:fragmentation mass ~1000MM :fragmentation mass ~1000M☉

:accretion rate ~ 10-3M☉ yr-1

fragM

M ☉ y
: massive star lifetime ~106 yrOBt

: mass of star when  the accretion is halted by stellar 
feedback > 100M☉

feedbackM

sun* M1000100M

Thus, Pop III stars are predicted to be very massive. 



Formation of  the second generation Pop III stars (Pop III.2)
1. Initial condition in the formation is different from 

first generation (Pop III.1) stars:
Ioni ation b Pop III 1 starsIonization by Pop III.1 stars.
Density fluctuation induced by HII regions of the 
Pop III.1 and blast waves generated by the first SN.Pop III.1 and blast waves generated by the first SN. 

2. Environment is different:
External radiation field (UV from Pop III.1)
Cosmic rays

3. Abundance is different: 
Metal supply from Pop III.1 starsMetal supply from Pop III.1 stars
Dust formation

Due to these differences the Pop III 2 stars do not become asDue to these differences, the Pop III.2 stars do not become  as 
massive as Pop III.1 stars. 



Metallicity effect on the formation of Pop III

Omukai et al. (2005)



Metallicity effect on the formation of Pop III

1. Cooling of gas by dust emission starts at 5]H/[ Z



Metallicity effect on the formation of Pop III

2. Formation of H2 molecule on dust grains starts 
at 4]H/[ Z



Metallicity effect on the formation of Pop III

3. Gas cooling by HD emission line starts at 3]H/[ Z



Metallicity effect on the IMF of Pop III

The IMF of the fragments 
of  gas with different 
metallicities. 
With zero metallicity theWith zero metallicity, the 
mode of star formation is 
that of Pop III.1 withthat of Pop III.1 with 
which only very massive 
stars form. Then, with 
increasing metallicity, the 
Pop III.2-II mode becomes 
significant and low masssignificant and low-mass 
star formation occurs.

Omukai et al. (2005)



Population III star formation: summary
1. Pop III stars

i. Pop III.1 (first generation)
Forms in minihalo cooling onl b H molec lesForms in minihalo, cooling only by H2 molecules.
Typically very massive (100-1000 M☉) 

ii. Pop III.2 (second generation)ii. Pop III.2 (second generation)
Cooling by HD, etc.
Less massive than Pop III.1.

2. Even a tiny amount of metals (~10-5Z☉) alters the mode 
of star formation from Pop III 1 to Pop III 2of star formation from Pop III.1 to Pop III.2.

3. Because of two different modes in contraction, the IMF3. Because of two different modes in contraction, the IMF 
has a bimodality when the metallicity is low. With 
increasing metallicity, the two peaks of the IMF 
gradually merge and it becomes unimodal. 



Population III star formation: latest result

However, Hosokawa et al. (2011) have shown that the feedback 
stops the mass accretion and the final mass of the Pop III starsstops the mass accretion and the final mass of the Pop III stars 
cannot be high, only up to 40 M☉. Still there is a controversy.



7.3 HI cosmology: prelude to the SKA



7.3.1 Square Kilometre Array (SKA)

• A huge radio interferometer with a total antenna area of 1 
km2km
– More than 10 countries joined officially, and 20 countries 

are interested in it.
– Frequency: 0. 1GHz - 10GHz (lower than ALMA)

• Total antenna number: 15m antennas × 3000Total antenna number: 15m antennas 3000
• Longest baseline: 3000 km
• Location: Australia (SKA-low) and South Africa (SKA-mid)Location: Australia (SKA low) and South Africa (SKA mid)
• Feature: high frequency resolution, high angular resolution, 

wide area, wide frequency coverage, q y g

⇒ Ultimate long-wavelength continental radio telescope!Ultimate long wavelength continental radio telescope!



SKA-low: artist’s view



SKA-low: location



SKA-mid: artists’ view



SKA-mid: location



7.3.2 Specs of SKA

• About 10% of the ultimate

SKA1 (Phase 1)

• About 10% of the ultimate
specs of SKA

• Two topics are focused as the 
important themes of SKA1p
1. History of HI from the 

dark age to the present. 
2. Gravitational wave 

detection by pulsar 
observations. 



SKA2 (Phase 2)

Ultimate SKA. Final details will depend on the technical 
development and scientific requirement. 

Parameters
Frequency range 70MHz ~ 10GHz
Sensitivity 5,000 m²K-1 (400 μJy min-1) 
FoV 200 deg2 (70 ~ 300 MHz), 

1-200 deg2 (0. 3 ~ 1 GHz), 
max 1 deg2 (1 ~ 10 GHz)

Angular resolution < 0. 1 arcsec
Bandwidth (simultaneous) band center ± 50%
Spectral channels 16,384  per band per baseline
Precision of polarization 10,000:1



7.3.3 Comparison with present-day facilities



Comparison of SKA with other facilities: sensitivity



Comparison of SKA with other facilities: survey speed



7.3.4 Expected redshift distribution
Expected HI redshift distribution

The redshift distribution of HI 
galaxies has a peak at z 0 4 forgalaxies has a peak at z ~ 0.4 for 
SKA1 survey, and z ~ 0.6 for 
SKA2. 

Most of the sources are at z < 2.



7.3.4 Expected redshift distribution

The redshift distribution 

Expected radio continuum source redshift distribution

of radio continuum 
sources is more extended 
toward high than HItoward high-z than HI. 

N.B. However, this 
expectation is based on a 

(Blake et al. 2007)
certain galaxy evolution 
model, which is to be 
examined by SKA Seeexamined by SKA. See, 
e.g., Mancuso et al. (2015)



7.3.5 New topics in galaxy evolution

Existing HI surveys are shallow (> mJy), with poor angular 
l ti

Galaxy evolution at SKA frequency

resolution. 
NRAO VLA Sky Survey (NVSS)
S d U i it M l l Sk S (SUMSS)Sydney University Molonglo Sky Survey (SUMSS)
Faint Images of the Radio Sky at Twenty-cm (FIRST)
Westerbork Northern Sky Survey (WENSS)Westerbork Northern Sky Survey (WENSS)
The HI Parkes All Sky Survey (HIPASS) 
The HI Jodrell All Sky Survey (HIJASS)
The Arecibo Legacy Fast ALFA Survey (ALFALFA) 
etc.

< z > ~ 0.01-0.06
⇒ We can examine the properties statistically only for⇒ We can examine the properties statistically only for 
nearby galaxies, and it is difficult to discuss their evolution. 



Luminosity function at radio wavelengths
1.4 GHz continuum luminosity function

Galaxy LF at 1.4GHz by 
NVSS and 6dFGRS.

We note that the radio 
LF cannot be well 
described by Schechter
function, unlike optical, 
UV NIRUV or NIR. 

Neither by the double-
power-law, unlike FIR or 
X-ray LF. 

(Mauch & Sadler 2007)



1.4 GHz continuum luminosity function

If we plot the LFs of SF 
galaxies and AGNs (radio 
galaxies) we find thatgalaxies), we find that 
there are two power-law 
function components p
(Machalski & Godlowski
2000; Mauch & Sadler 
2007)

⇒Do they evolve? 

(Mauch & Sadler 2007)



Radio number counts

Different evolutions of SF 
galaxies and AGNs are suggestedgalaxies and AGNs are suggested 
from number counts (Takeuchi 
et al. 2001). 

Model NC of SF galaxies

Observed: at bright fluxes, 
AGNs with developed lobes 
dominate the counts.

See also Mancuso et al. (2015)



HI mass function (GASS)
Stellar mass range

HI mass function

(Lemonias et al. 2013)

HI MF gives an important constraint on the theory. 



Scaling laws including gas properties in galaxies
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(McGaugh et al. 2000)
If HI mass is taken into account and we construct a relation 

Circular velocity [kms-1]

between baryonic mass and circular velocity, linearity is 
recovered (McGaugh et al. 2000). 



The “extended” BTF

In the extended BTF, the slopeIn the extended BTF, the slope 
becomes shallower from dwarf 
spheroidals, normal galaxies, to 
clusters (clusters: violet symbols, 
giant galaxies: blue symbols, and 
d f h id l d b l )dwarf spheroidals: red symbols). 

⇒ Feedback?⇒ Feedback?

However, this sample does not 

To ard lo er HI masses!

include gas-rich dwarf galaxies. 

(McGaugh et al. 2010)
Toward lower HI masses!



Required sensitivity to examine the scaling relations of nearby 
l i

Tp detect the HI emission down to galaxies with HI mass =

galaxies

Tp detect the HI emission down to galaxies with HI mass = 
103 M☉(~ Mbaryon of dSph) at 3 Mpc, we need 
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⇒ SKA1 can achieve this sensitivity



⇒ SKA1 can achieve this sensitivity. 



Star forming galaxy main sequence

Since the SFR is the most interesting quantity, we want to 
examine the scaling relations including the SFR. 

Specific star formation rate (SSFR)

A prominent sequence of SF 
galaxies is found on the 
stellar mass-SSFR plane: 
star-formation main 
sequence (SFMS)sequence (SFMS).

cf. The SFMS corresponds to 
the blue cloud on the color-
magnitude diagram. (Schiminovich et al. 2007)



Star forming galaxy main sequence

The SFMS is a sequence of galaxies with a secular evolution 
(i.e., not merger). 

Starburst galaxies (e.g., ULIRGs) 
strongly deviate from the SFMS 
(e.g., Buat et al. 2007). 

(Buat et al. 2007)



Star forming galaxy main sequence

The SFMS is a sequence of galaxies with a secular evolution 
(i.e., not merger). 

Dependence on various 
quantities are examined (dust q (
temperature, clumpiness, etc., 
particularly the relation to 
the molecular gas mass 
(Genzel et al. 2012; Magnelli
et al 2012)et al. 2012). 

Some CO observations reach 
redshifts of 1 < z < 2, but not 
yet to be called a survey.  
HI is far behind it. 

(Genzel et al. 2012)



Schmidt-Kennicutt law

By considering the size of a galaxy, we can discuss the relation 
between surface densities of gas and SFR. This is know as the 
S h id K i l ( l S l’ l )Schmidt-Kennicutt law (see also Samuel’s lecture). 

The classical Schmidt-Kennicutt
law is the relation between theaw s t e e at o betwee t e
surface densities of gas and SFR. 

A single power law is found in a 
wide range of gas surface density, 
but the slope is still a matter ofbut the slope is still a matter of 
debate.  

(Kennicutt & Evans 2012)



Schmidt-Kennicutt law

What the S-K law shows is the relation between total gas mass 
(HI + H2) and SFR.2

We need observations of HI 
as deep as CO (1 < z < 2) toas deep as CO (1 < z < 2), to 
explore the evolution of the 
S-K law.  

⇒ SKA1 to SKA2

Synergy with observations 
of molecules is important!of molecules is important!

(Kennicutt & Evans 2012)



Transition from HI to H2 and star formation

Production Dissociation
✴Ph di i i b UV✴2-atom conjugate reaction

✴3 t lli i ti

✴Photodissociation by UV
Not efficient in a dense dusty 
molecular clouds because of✴3-atom collision reaction molecular clouds because of 
self-shielding.

✴Dust surface reaction 
⇒most efficient in galaxies

✴Dissociation by cosmic rays
Dissociate H2 in molecular 
l d

H atom

clouds. 

✴Dissociation by collision
(1) sticking (2) diffusion (3) reaction (4) ejection

(Takahashi 2000)

✴Dissociation by collision
Contribution is small.

(e.g. Gould & Salpeter 1963; (Takahashi 2000)
Draine & Bertoldi 1996)



f ( / )
H2 and HI in galaxies

✴For late types, fmol ~ 25-30 %

fmol (= ΣH2/Σtotal)
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✴Radial decrease. 
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(Bigiel & Blitz 2012; Boseｌli et al. 2014)



Transition from HI to H2

✴Threshold density above which the photodissociation becomes 
efficient (Z☉ is assumed):

Σ 10 M -2 N 1021 2ΣH2 ~ 10 M☉pc-2, NHI ~ 1021 cm2

Consistent with of local late-type galaxies. 

(Bigiel et al. 2008)



Transition from HI to H2

✴Transition column density is determined by metallicity (Gnedin
et al. 2009). 

Metal-poor molecular clouds do not contain much dust
⇒Critical NHI becomes higher.⇒Critical NHI becomes higher. 

Z☉ 0.3 Z☉ 0.1 Z☉

(Gnedin et al. 2009)



Exploration of galaxy formation via absorption
Observation of gas-dominated galaxies

In optical, gas that is not yet turned into galaxies, or gas-
dominant young galaxies can be efficiently detected through 
QSO absorption lines. 

Quasar Observer



Exploration of galaxy formation via absorption
Observation of gas-dominated galaxies

In optical, gas that is not yet turned into galaxies, or gas-
dominant young galaxies can be efficiently detected through 
QSO absorption lines. 

Quasar Observer

QSO absorption line systems with particularly high H-
column density are observed as damped Lyman  systems 
(DLAs). Such systems are thought to be a progenitor of 
present-day giant galaxies. 



Observation of gas-dominated galaxies

Quasar Observer

Observations showed that these systems are gas-rich and 
metal-poor (e.g., Ledoux et al. 2003).

Also, DLAs can be a probe to explore the power spectrum of 
the large-scale structure at smaller scales. g



Observation of gas-dominated galaxies

Quasar Observer

Observations showed that these systems are gas-rich and 
metal-poor (e.g., Ledoux et al. 2003).

Also, DLAs can be a probe to explore the power spectrum of 
the large-scale structure at smaller scales. g

However, there is a fundamental problem in optical/UV-based , p p
observation!



Observation of gas-dominated galaxies

Quasar Observer

W t t d t t b ti li t H iWe want to detect absorption line systems. However, since 
the continuum emission from background quasars would be 
very strongly extinguished through the systems withvery strongly extinguished through the systems with 
extremely high column density, such systems would be 
dropped from the initial selection (Vladilo & Péroux 2005).pp



Observation of gas-dominated galaxies

Quasar Observer

W t t d t t b ti li t H iWe want to detect absorption line systems. However, since 
the continuum emission from background quasars would be 
very strongly extinguished through the systems withvery strongly extinguished through the systems with 
extremely high column density, such systems would be 
dropped from the initial selection (Vladilo & Péroux 2005).pp

But such a high column density systems are very possibly 
just before the initial starburst. Namely they are the systems just be o e t e t a sta bu st. Na e y t ey a e t e syste s
fundamental to understand the cosmic SF history and what 
we indeed want to observe. 



Observation of gas-dominated galaxies

Quasar Observer

W t t d t t b ti li t H iWe want to detect absorption line systems. However, since 
the continuum emission from background quasars would be 
very strongly extinguished through the systems withvery strongly extinguished through the systems with 
extremely high column density, such systems would be 
dropped from the initial selection (Vladilo & Péroux 2005).pp

But such a high column density systems are very possibly 
just before the initial starburst. Namely they are the systems just be o e t e t a sta bu st. Na e y t ey a e t e syste s
fundamental to understand the cosmic SF history and what 
we indeed want to observe. 

This selection bias is fatal!



Observation of gas-dominated galaxies

Quasar Observer

How do we solve this fundamental problem?How do we solve this fundamental problem? 



Observation of gas-dominated galaxies

How do we solve this fundamental problem?

Quasar Observer

How do we solve this fundamental problem? 

Select quasar continuum at radio, and explore 21-cm q , p
absorption line systems: best topic for SKA2!

A i / i i iAdvantage to optical/UV absorption line observation: 

1 At radio dust extinction is negligible1. At radio, dust extinction is negligible.  
2. Because of small cross section, very high column density 

systems can be observed. y



Observation of gas-dominated galaxies

How do we solve this fundamental problem?

Quasar Observer

How do we solve this fundamental problem? 

Select quasar continuum at radio, and explore 21-cm q , p
absorption line systems: best topic for SKA2!

A i / i i iAdvantage to optical/UV absorption line observation: 

1 At radio dust extinction is negligible1. At radio, dust extinction is negligible.  
2. Because of small cross section, very high column density 

systems can be observed. y



Observation of gas-dominated galaxies

Quasar Observer

Not only the continuum observation but also ancillary 
observations like radio emission, optical etc. will provide us 

ith i f ti th h i f th twith more information on the physics of the systems. 

W l d l i th ti l d l f l l tiWe are also developing theoretical models of galaxy evolution 
in parallel. 



Observation of gas-dominated galaxies

Quasar Observer

(York et al. 2007)



Statistics of HI absorption line systems 

Requirement for unbiased detection of DLAs:

1. For a typical QSO (100 mJy), rms ~ 33 nJy is needed to 
detect τ ~ 0.001. 

2 Since the noise level should be 1/3000 for a continuum the2. Since the noise level should be 1/3000 for a continuum, the 
dynamic range must be 35 dB.  

3. Pointed observation: to detect τ ~ 0.001, a pointed , p
observation with ~ 10 hr per one DLA by SKA-LOW is 
ideal. 



Stay tuned to the SKA
As well as other wavelengths!


