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Overview	

What	kind	of	informa)on	is	relevant	for	the	first	
popula)on	of	stars	appearing	in	the	universe?	
•  The	Ini)al	Mass	Func)on	
•  Cooling	and	coolants	
•  The	Jeans	instability	
•  Fragmenta)on	of	the	clouds	
•  Detec)on	
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The	building	blocks		
in	the	universe:	stars	

corona	
photosphere	

Stellar	core	

chromosphere	
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Star clusters 
Star	clusters	are	very	useful	to	
understand	stars	and	their	
evolu)on:	
• 	Stars	all	at	same	distance		
• 	Stars	are	dynamically	bound	
• 	Stars	have	same	age	
• 	Stars	have	same	chemical	
composi)on	
	
Can	contain	103	–	106	stars	

NGC3603	from	Hubble	Space	Telescope		
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Globular	clusters	are	more	massive	star	clusters	
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Basic parameters to compare theory and observations: 
•  Stellar mass (M)  
•  Luminosity (L)  

–  The total energy radiated per second i.e. power (in W): 
–  If	F	is	the	flux	(W·m−2)	and	L	is	the		luminosity	(W)	or	where													

F	is	the	flux	(erg·s−1·cm−2)	and	L	is	the	luminosity	(erg·s−1)	and									
D	the	distance	to	the	star:                      

•  Radius (R) 
•  Effective temperature (Te) 

–  The temperature of a black body of the same radius as the star that 
would radiate the same amount of energy. Thus 

     L= 4πR2 σ Te
4  

 where σ  is the Stefan-Boltzmann constant (5.67× 10-8 Wm-2K-4) 

Observable properties of stars 

€ 

L = Lλdλ0

∞

∫

€ 

F =
L

4πD2
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 Magnitudes and Colours 

	
	
		

(γ	Orionis)	

(α	Orionis)	
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The Hertzsprung-Russell diagram 

M,	R,	L	and	Te	do	not	vary	independently.		
Two	major	rela)onships:	
1.  	L	with	T			
2.  	L	with	M	
	
The	first	is	known	as	the	Hertzsprung-
Russell	(HR)	diagram	or	its	observed		
counterpart,	the	colour-magnitude	
diagram	(CMD).		
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Project carried 
within the 

Master SPaCE 
2015-2016: 

 
« Globular 

Clusters through 
Space & Time » 

 
by 
 

Jon FERNANDEZ 
OTEGI 

Théo LOPEZ 
Carla RODRIGUEZ 

#	We	reset	the	main	parameters	of	the	plot	
def	update_plot(i,	temperature,	luminosity,	
color,	size,	elev,	azim,	dist,	scat1,	scat2):	
				global	pause	
				#	Set	colors...	
				scat1.set_array(color[i])	
				#	Set	sizes...	
				scat1.set_sizes(size[i])	
				#	Set	eleva)on	and	azimuth...	
				ax1.view_init(elev=elev[i],	azim=azim[i])	
				#	Set	distance...	
				ax1.dist=dist[i]	
				posi)on	=	
np.column_stack((temperature[i,:],luminosity[i,
:]))	
				#print('posi)on',	posi)on[i],	color[i],	size[i])	
				scat2.set_offsets(posi)on)	
				scat2.set_array(color[i])	
				scat2.set_sizes(size[i])	
	
				point.set_data(x,	y)	
				)me_text.set_text()me_template	%	
(big_array[0,i,0]))	
	
				return	scat1,	scat2,	point,	)me_text	
	
ani	=	anima)on.FuncAnima)on(fig,	
update_plot,	frames=range(numframes),	
																																		fargs=(temperature_data,	
luminosity_data,		
																																		color_data,	size_data,		
																																		elev_data,	azim_data,	
dist_data,	
																																		scat1,	scat2),	blit=False,	
interval=25,	repeat=False,	
																																		init_func=init)	
	
plt.show()	
ani.save('Glob_Evol.mp4',	fps=24,	
extra_args=['-vcodec',	'libx264'])	

hkps://people.lam.fr/
burgarella.denis/denis/
Master_SPaCE.html	



Mass	func)ons	
•  The	stellar	masses	are	one	of	the	most	important	factors	in	determining	

their	evolu)on,	so	when	studying	a	stellar	popula)on,	we	are	interested	in	
es)ma)ng	their	masses.	

•  An	important	informa)on	is	the	number	of	stars	per	unit	mass	which	is	
called	a	mass	func)on.	

•  We	define	the	mass	func)on	Φ(M)	such	that	Φ(M)	dM	is	the	number	of	
stars	with	masses	between	M	and	M	+	dM.	

•  With	this	defini)on,	the	total	number	of	stars	with	masses	between	Mlow	
and	Mup	is:	

•  By	deriving	both	sides,	we	get:	

•  Φ	is	the	deriva)ve	of	the	number	of	stars	with	respect	to	mass,	i.e.	the	
number	of	stars	dN	within	some	mass	interval	dM.	

€ 

N(Mlow,Mup ) = Φ(M)dM
Mlow

Mup
∫

€ 

dN
dM

=Φ(M)
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Total	mass	of	stars	between	Mlow	and	Mup	
•  If	we	are	interested	in	the	total	mass	of	stars	between	Mlow	and	Mup	in	a	given	

system	rather	than	the	number	of	such	stars,	we	must	integrate	Φ	)mes	the	mass	
per	star.	Thus	the	total	mass	of	stars	with	masses	between	Mlow	and	Mup	is:	

•  or	equivalently:	

•  ξ	(M)	gives	the	number	of	star	per	ln(M),	rather	than	per	number	in	mass.		
•  Physical	explana.on:		

–  Suppose	that	Φ(M)	=	Cte	constant:	there	are	as	many	stars	from	1	−	2	M�		as	
there	are	from	2	−	3	M�		as	there	are	from	3	−	4	M�	,	etc.		

–  Instead	suppose	that	ξ(M)	=	Cte:	there	are	equal	numbers	of	stars	in	intervals	
that	cover	an	equal	range	in	logarithm,	so	there	would	be	the	same	number	
from	0.1	−	1	M�	,	from	1	−	10	M�	,	from	10	−	100	M�	,	etc.	

€ 

M*(Mlow,Mup ) = MΦ(M)dM
Mlow

Mup
∫

€ 

dM*

dM
= MΦ(M) = ξ(M)

y = ln(m) 
dy/dm = 1/m 
dy = dm/m 
d[ln(m)] = dm/m 
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•  The	distribu)on	of	ini)al	stellar	masses	(IMF)	might	be	invariant	[hot	topic].	

•  If	we	examine	two	popula)ons,	of	galaxies	of	different	sizes,	then	Φ(M)	=	dN/dM	
will	be	different	because	they	have	different	numbers	of	stars.	However,	they	may	
have	the	same	frac)on	of	their	stars	in	a	given	mass	range.		

•  So,	it	is	generally	common	to	normalize	Φ	or	ξ	so	that	the	integral	is	unity,	i.e.	to	
compute	a	normaliza)on	factor	for	Φ	or	ξ	such	that	the	integrals	are	equal	to	1.	

•  When	the	mass	is	normalized,	Φ(M)	dM	and	ξ(M)	dM	give	the	frac)on	of	stars	
(frac)on	by	number	for	Φ	and	frac)on	by	mass	for	ξ	)	with	masses	between	M	and	
M	+	dM.	

with	mlow=	0.1M¤ and	mup	=	120M¤	

In LMC at 165 000 l.y. 
• R136a1 : 265 M¤ (?) 
• R136a2 : 195 M¤ (?) 
ηCarinae : 120 M¤ 
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The	Salpeter	Ini)al	Mass	Func)on	
(IMF)	

If	we	ignore	the	low-mass	flakening	of	the	IMF	below	~	1M¤,	we	might	assume	that	
the	same	slope	holds	over	the	range	Mmin	=	0.1M¤	to	Mmax	=	120M¤.		
	
This	is	known	as	the	Salpeter	IMF:	ϕ(M)	=	ϕ0 M-2.35	

The	normaliza)on		ϕ0	(in	units	of	M¤ )	is	evaluated	by	requiring	that	the	integral	
equals	to	1:	
	
	
	
	
	
	
In	a	similar	way,	we	have	in	terms	of	mass:	

1= Φ(M )dM =
Mmin

Mmax
∫ AM −2.35 dM =

Mmin

Mmax
∫ A

−1.35
(Mmax

−1.35 −Mmin
−1.35 ) = A

1.35
(Mmin

−1.35 −Mmax
−1.35 )

A = 1.35
Mmin

−1.35 −Mmax
−1.35 = 0.060 with Mmin = 0.1MΘ and 120MΘ

€ 

1 = ξ(M)dM =
M min

M max
∫ BM −1.35dM =

M min

M max
∫ B

−0.35
(Mmax

−0.35 −Mmin
−0.35) =

B
0.35

(Mmin
−0.35 −Mmax

−0.35)

€ 

B =
0.35

Mmin
−0.35 −Mmax

−0.35 = 0.17 with Mmin = 0.1MΘ and 120MΘ
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Illustra)on	
So,	we	will	have:	ϕ(M)	=	0.060	M-2.35	and	ξ(M)	=	0.17	M-1.35		for	M	=	0.1	–	120M¤ 
 
We	can	es)mate	the	frac)on	of	stars	by	number	and	by	mass	in	a	given	mass	range.	
For	instance,	what	is	the	frac)on	of	stars	by	number	(1)	and	by	mass	(2)	more	massive	
than	the	Sun	in	a	new-born	popula)on	with	a	Salpeter	IMF?	
	
1)	
	
	
	
	
2)		
	
	
	
	

4.5%	of	the	stars	are	more	massive	that	the	Sun	but,		
the	mass	of	these	stars	amounts	to	40%	of	the	new-born	stars.		

€ 

fN (> MΘ) = 0.060Φ(M)dM =
1

120
∫ 0.060M −2.35dM =

1

120
∫

fN (> MΘ) =
0.060
1.35

(1−1.35 −120−1.35) = 0.045

€ 

fM (> MΘ) = 0.17MΦ(M)dM =
1

120
∫ 0.17M −1.35dM =

1

120
∫

fM (> MΘ) =
0.17
0.35

(1−0.35 −120−0.35) = 0.40
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Two	remarks	
The	total	stellar	mass	of	a	system	is	computed	from	the	following	integral:	
	
	
	
	
	
It	shows	that	most	of	the	stellar	mass	lies	in	low-mass	stars.	
	
The	total	luminosity	(assuming	L	=	C	M3.5)	is	computed	as	follows:	
	
	
	
	
	
which	shows	that	the	total	stellar	luminosity	is	dominated	by	the	most	massive	stars.	

€ 

Mtot = MΦ(M)dM =
M min

M max
∫ AMM −2.35dM =

M min

M max
∫ AM −1.35dM

M min

M max
∫

Mtot =
A

−0.35
(Mmax

−0.35 −Mmin
−0.35) =

A
0.35

(Mmin
−0.35 −Mmax

−0.35)

€ 

Ltot = L(M)Φ(M)dM =
M min

M max
∫ CM 3.5AM −2.35dM =

M min

M max
∫ ACM1.15dM

M min

M max
∫

Ltot =
AC
2.15

(Mmin
2.15 −Mmax

2.15)

most	of	the	stellar	mass	lies	in	low-mass	stars	

that	the	total	stellar	luminosity	is	dominated	by	the	most	massive	stars	
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Other	more	realis)c	IMFs	(mainly	for	faint	stars)	
IMF		Scalo	(1998):	ξ(m)	=	m-α	
• 	α	=	-0.2	±	0.3	for	0.08	≤	m/M�	<		1	M�	
• 	α	=	-1.7	±	0.5	for						1		≤	m/M�	<		10	M�	
• 	α	=	-1.3	±	0.5	for			10		≤	m/M�	<	100	M�

		

IMF	Kroupa	2001:	ξ(m)	=	m-α	

[α=	0.3	for													m/M�		<	0.08]	
	α=	1.3	for	0.08	≤	m/M�		<0.5	
	α=	2.3	for			0.5	≤	m/M�			
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Sample	Ini)al	Mass	Func)ons	of	Stars	

18 

€ 

Φtop−heavy (M)∝
ΦSalp (M)∝ M −2.35, for 0.1MΘ < M <100MΘ

e.g.M −1, for100MΘ < M < 500MΘ

& 
' 
( 

Top-heavy	IMF	
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Variability	of	the	IMF	?	
Marks	et	al.	(2012)	An	important	if	not	crucial	

ques[on	is:	
	
• 	Is	the	Ini)al	Mass	Func)on	
universal	or	does	it	vary	
with	the	environment,	the	
element	abundances	
(metallicity),	the	redshiz,	
the	star	forma)on	rate,	the	
Jeans	mass,	…	?	
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Why	is	the	IMF	of	major	importance	?	
Several	reasons	that	range	from	a	basic	beker	understanding	of	
the	star	forma)on	process	to	wider	Xtragalac)c	/	cosmological	
consequences:	
• 	Changing	the	IMF	=>	changing	the	stellar	mass	(M*)	of	the	stars	
in	a	system	(e.g.	a	galaxy)	
• 	Changing	M*	=>	changing	the	star	forma)on	rate																			
(SFR	=	M*	/	Δt)	and	therefore	all	parameters	based	on	SFR:	

o 	Cosmic	SFR	density	=	density	of	star	forma)on	per	unit	volume	of	the	
universe	at	a	func)on	of	reds�it		
o 	Specific	SFR	=	SFR	/	M*	=>	very	important	parameter	that	provides	an	
es)mate	of	the	star	forma)on	ac)vity	in	galaxies	
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Cosmological	implica.ons	of	a	stellar	ini.al	mass	func.on	
that	varies	with	the	Jeans	mass	in	galaxies	

Narayanan	&	Davé	(2012)		

Evolu)on	of	cosmic	SFR	density.	
	
The	purple	solid	line	shows	model	form	from	
Hopkins	et	al.	(2010),	assuming	a	Kroupa	IMF	
With	a	varying	IMF	model,	the	SFR	density	
decreases,	as	is	shown	by	the	red	dashed	line	
The	blue	dash–doked	line	shows	the	Wilkins	et	
al.	(2008)	SFR	density	that	would	be	necessary	
to	match	the	observed	present-day	stellar	
mass	density	

Kistler	et	al.		(2009)		

Burgarella	et	al.		(2013)		
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Giant molecular clouds  (GMC)
Star formation takes place in cold, dense gas clouds: The molecular clouds. 
Stars form in groups or clusters. The largest GMC in Orion is about 1000 
light years away. Hot young stars (25-50 million year old) ionize their 
surroundings and are therefore easily visible. 

- molecular hydrogen
- ~1% of dust (Si and C)
- organic and non-organic molecules ammoniac
   NH3, formaldehyde H2CO, acetylene HC3N
- ~ 105-106 solar masses
- ~ 1000 atoms per cm3 
- clumpy: 103-104 solar masses clumps
- T $ 10 K

! main characteristics:

! structure
- emission of the H2 molecule but difficult because small dipole moment. 
  Molecules with larger dipole moment (CO) are better but do not represent 
  the mass...
- dust emission (radio band). Interpretation difficult since many parameter    
   unknown (departure from LTE, opacity, dust temperature, etc.)
- IR cameras on large telescopes measure the absorption on thousands of 
  background stars → map the dust distribution in the cloud

Bok globules
Example characteristics:
   - 410 light years away
   - diameter ~ 12'500 AU
   - T ~ 16 K
   - ~ 2.1 solar masses
   - in gravitational equilibrium
     with Pbound=12.5 % 10-12 Pa

Bok globule: Barnard 68

⇒  Wien law λmax = 2.9x10-3/ T ~ 290 μm  
⇒  Observation in Far-IR (Herschel, ALMA, PdB) 



Star	Forma.on	Sequence	in	brief	
	
•  Jeans	instability	=>	gas	cloud	collapse	begins	(~	105	Msun)	
•  Isothermal	collapse	(free-fall	)me	108	years)	
• Fragmenta)on	of	the	cloud	of	gas	
• Center	of	cloud	becomes	op)call	thick:	adiaba)c	
compression	(~	10-13	g/cm3)	=>	thermodynamically	isolated	
i.e.,	no	heat	transfered	to	the	surroundings	

• First	hydrosta)c	core	forms:	~	170K	(first	equilibrium	phase)	
• H2	dissocia)on	(T	~	2	000K)	and	second	core	collapse	
•  Ionized	H	in	second	core,	dynamically	stable	again	(10-3	Msun,	
20	000K,	second	equilibrium	phase)	

• Pre-Main	Sequence	contrac)on	
• Zero	Age	Main	Sequence	(ZAMS):	luminosity	produced	by	H	
fusion,	minimum	mass	0.08	Msun	
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•ZAMS: Zero age main sequence
•PMS contraction => center heats up
•~3 Mio K: H burning ignites
•contraction stops, energy production 
mainly via fusion

Overview star formation sequence: 
Nomenclature

(via protoplanetary disk)

•Protostar
•optically thick stellar core
•forms during the end of the 
adiabatic contraction phase and 
grows during the accretion phase. 
•large accretion rates ~10-5 Msun/yr

•Pre Main Sequence Star
•visible in the optical
•small accretion rates ~10-7 Msun/yr
•energy generation mainly via 
contraction

~3	106	K:	
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The	virial	theorem	
	
	
The	virial	theorem	is	given	by:	
	
Where	the	gravita)onal	and	the	kine)c	energies	are	accounted.	
	
In	numerous	cases	(slow	evolu)on,	quasi-sta)c),	the	second	
deriva)ve	of	the	iner)al	momentum	is	zero	and	we	have:	
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•  However,	we	need	to	account	for	all	the	forces	ac)ng	on	the	
par)cles,	internal	or	external	to	the	system:		

•  Assuming	an	ideal	gas	with	internal	forces	that	produces	an	
internal	pressure	pint	=	(γ-1)ρu	with	the	specific	heat	ra)o	
equal	to	γ	=	cp	/	cv.	u	is	the	internal	energy	density	and	pS	the	
constant	surface	pressure	:	

	

•  Finally:		
€ 

Fi
i
∑ ri = 3(γ −1) ρudV +∫ −pS

S
∫ next .rdS = 3(γ −1)Utherm − pS ∇r.dV

V
∫

€ 

∇r =
∂x
∂x

+
∂y
∂y

+
∂z
∂z

=1+1+1 = 3

€ 

−pS ∇r.dV = −3pS dV = −3pSV
V
∫

V
∫

€ 

d2I
dt

= 2Ec +Ω− 3PSV + 3 γ −1( )Utherm
€ 

Fi
i
∑ ri = 3(γ −1)Utherm − 3pSV

cp:	heat	capacity	at	constant	pressure		
cv:	heat	capacity	at	constant	volume	

γ	=	5/3	for	an	ideal	gas	



•  From	the	previous	equa)on:	
•  Let’s	assume	a	sta)c	configura)on	with	no	external	pressure:	

•  In	absence	of	any	internal	energy,	we	find	the	same	equa)on	
as	before:		

•  In	the	absence	of	any	bulk	kine)c	energy	(e.g.	not	rota)on):	

•  Let’s	define:	
•  Then:																												and			

€ 

d2I
dt

= 2Ec +Ω− 3PSV + 3 γ −1( )Utherm

€ 

d2I
dt

= 2Ec +Ω+ 3 γ −1( )Utherm

€ 

2Ec +Ω = 0

€ 

Ω+ 3 γ −1( )Utherm = 0

€ 

Etot =Ω+Utherm

€ 

Ω = Etot −Utherm Utherm = Etot −Ω
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•  So	from:		

•  We	have:	

•  And:			

•  Which	is	an	example	of	a	non-rota)ng	star	in	hydrosta)c	
equilibrium.	

€ 

Etot −Utherm + 3 γ −1( )Utherm = 0
Etot = (1− 3γ + 3)Utherm = (4 − 3γ)Utherm

Etot = (4 − 3γ)Utherm

€ 

Ω+ 3(γ −1)(Etot −Ω) = 0
Ω+ 3γEtot − 3Etot − 3γΩ+ 3Ω
3(γ −1)Etot = −Ω − 3Ω+ 3γΩ

Etot =
(3γ − 4)
3(γ −1)

Ω

€ 

Ω+ 3 γ −1( )Utherm = 0
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•  Remarks:	
– γ	>	4/3	=>	Etot	<	0	and	the	system	is	bound.	For	
instance	for	a	mono-atomic	gas,	γ	=	(f+2)	/	f	=	5/3	

																															i.e.	if	the	contrac)on	is	slow	and	
quasi-sta)c,	half	of	the	poten.al	energy	is	
transformed	in	internal	energy	(heat)	and	the	
rest	is	lost	in	radia)on.	The	system	is	not	stable.	

– γ	=	4/3	=>	Etot	=	0,	i.e.,	the	gas	is	radia)on	
dominated	and	the	total	energy	is	independant	of	
the	radius.	

– γ	<	4/3	=>	Etot	>	0	i.e	the	system	is	not	bound	and	
the	system	is	stable.	

€ 

Etot =
1
2
Ω = −Utherm

f	is	the	number	of	
degrees	of	freedom:			
f	=	3	for	mono-atomic	
and	f	=	5	for	diatomic	
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Jeans	instability	
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Jeans instability from the virial theorem
Let us again assume a static, spherical, homogenous cloud of radius r. We now add the fact that 
the cloud is in equilibrium with an outside medium at a pressure pext. We further assume that the 
cloud does not have any bulk kinetic energy and the the pressure is constant throughout the cloud.

We recall that the general virial theorem is given as

With our assumptions this becomes

where we have assumed an ideal gas with f degrees of freedom. The factor q in the gravitational 
potential energy depends on the density distribution. For a homogeneous density, it is 3/5, cf later. 

We first note that we can use the ideal gas law  , so

This tells us that the pressure in the cloud must be higher in the presence of gravity. Or in 
other words, the necessary external pressure to confine the gas is lower. In its absence, the 
pressure in the cloud and the one outside are the same.

I: moment of inertia

Assuming further f=3 (1 atomic gas) and 
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Jeans instability from the virial theorem II

We note:
-for too high pext no equilibria exist.
-for sufficiently low pext two equilibra exist. But 
only one is stable:

1) At point B, if we decrease R (compression), pext increases (and with it also the internal p). 
This is a stable equilibrium.
2) At point A, if we decrease R (compression), pext necessary to confine the cloud decreases 
too (and with it also the internal p). This is clearly an unstable equilibrium.  

We can find the critical radius Rm which divides the two regimes by setting

which yields

Using and the ideal gas EOS where

is the isothermal sound speed, we find:

For fixed M and T the external pressure has the 
following shape as a function of R. The curve 
gives us possible equilibrium states (radii) at a 
specified external pressure.

pext

R

A B

Rm

 
 

(see next page  
for demonstration) 
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During	collapse,	the	density	increases	and	therefore	MJ	
decreases,	which	leads	to	fragmenta)on	of	the	cloud.	



Jeans instability from the virial theorem III
The Jeans length is from this analysis

The numerical constant is very close to unity 
(ca. 0.95), so we find a similar result as before.

The corresponding Jeans mass is

This is more than the typical mass of a single star (less than 1 Msun). This indicates that 
during the collapse, only part of the gas ends up in stars, and that the cloud fragments 
during collapse. Thus many stars form out of one collapsing cloud, which means that 
young stars get born in clusters.

Using typical values 

we find The collapse thus begins 
with large masses.

and

π	 4.89	x	1021	 [kg]	

10-19	kg	/	m3	

	3.9	pc	≈	800	000	AU	

€ 

∝
1
ρ

€ 

∝
T 3

ρ

G	=	6.67	x	10-11	m3	kg-1	s-2,	kB	=	1.38	x	10-23	J	K-1		and	mH	=	1.67	x	10-27	kg	



Collapse	of	a	T	=	0	K	spherical	
homogeneous	gas	cloud	
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Collapse of a T=0 K spherical homogeneous 
gas cloud

We now consider what is happening after the collapse has started. We assume that 
pressure does not play a role (yet), which we (formally) can represent by assuming T=0 K.

Then, the equation of motion of a spherical cloud is simply given as

Integration by separation of the variables with the initial conditions v(0)=0 and r(0)=r0 yields 
the velocity as a function of r

Next we look for v(t) and r(t). With the ansatz r=ro cos2(α) we eventually find the non algebraic 
equation for α(t)

*	educated	guess	

*	
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Fragmentation I

During the collapse, ρ increases. As long as the density still remains adequately low for the 
cloud to be transparent, the released thermal energy is radiated into the universe and the 
temperature remains approximately constant. As 

suggests, this leads to a decrease of the Jeans mass. In particular, sub-sections of the 
cloud suddenly surpass their own Jeans limit and start collapsing on their own. As also tff is 
smaller for higher densities, these sub-collapses proceed faster. This clearly leads to 
fragmentation.

Here we calculate the collapse of an density 
perturbation in the otherwise homogenous cloud 

Such places might be the origin of later individual star 
formation, as they decouple.

ì	

è	
î	
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Fragmentation II

Using the free fall velocity, we can re-write the master equation

The collapse occurs at α=!/2. To compute the difference in 
collapse between the background cloud and the perturbation, 
we define β as the parameter characterizing the cloud, and θ the 
parameter characterizing the perturbation.

Because most of the action happens shortly before the complete collapse, it is convenient to 
introduce small angles measuring the difference to the full collapse (where we can use that for 
small angles e.g. sin(α)#α) :

for the background cloud

for the perturbation

Both angles are <<1, and complete collapse occurs when they vanish.

Inserting this into the master equation, we find after some algebra:
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Using the free-fall velocity, we can re-write the master equation: 
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Fragmentation III
This means that at moment when the perturbation has fully collapsed (χ=0), we have in the 
background cloud:

This corresponds to a density increase in the background cloud equal

For example, an initial density perturbation of 1% (                       )will fragment out of the gas 
cloud when the mean density of the latter has increased by a factor 7000. Keeping in mind 
that the full density increase form a GMC to a star is  ~20 orders of magnitude, this is a small 
increase only.

In other words, small initial density fluctuations lead to a much faster collapse.
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This	is	important	for	the	forma.on	of	stars	but	also	in	the	early	universe.	



• 	Star	forma)on	is	governed	by	two	dominant	influences:	
o 	gravity,	the	universal	force	that	causes	all	maker	to	akract	
o 	heat.		

• 	Gravity's	pull	overcomes	the	random		
gas	mo)ons	within	an	interstellar	cloud,	
ini)a)ng	a	contrac)on	phase	that	will	
last	approximately	100,000	years	and		
culminate	in	the	forma)on	of	a	star.		

• 	During	this	collapse,	the	gas	density	increases.	Collisions	
between	atoms	and	molecules	become	more	frequent	and	the	
gas	temperature	rises.		

• 	The	hea)ng	of	the	collapsing	cloud	poses	a	significant	problem:		
a	heated	gas	wants	to	expand,	the	cloud	collapse	could	be	
halted	or	even	reversed	unless	heat	is	effec)vely	and	
con)nuously	removed	from	the	cloud.	



• 	One	process	which	provides	significant	cooling	involves	
collisions	between	molecules.		
• 	When	two	molecules	collide,	they	convert	some	of	their	
thermal	(kine)c)	energy	into	a	form	of	poten)al	energy.	The	
energy	can	be	stored	in	the	molecule	either	by	simple	rota)on	
or	by	internal	vibra)on	or	even	by	lizing	one	or	more	electrons	
into	a	"higher"	less	bound	orbit	around	the	atoms	in	the	
molecule.	
• 	This	energy	can	be	later	released	by	the	emission	of	a	photon	
of	a	par)cular	energy	that	is	characteris)c	of	these	molecular	
species.	Photons	that	escape	the	cloud	carry	this	energy	with	
them,	thus	helping	to	cool	the	cloud.		
• 	Atoms	and	molecules	are	considered	to	be	good	coolants	if		

o 	they	quickly	emit	photons	following	a	collision	
o 	they	are	present	in	large	enough	quan))es	that	a	
significant	number	of	photons	are	emiked.	

• 	In	this	way	the	collapse	of	an	interstellar	cloud	is	)ed	to	the	
chemical	composi)on	of	that	cloud.	



• 	Hydrogen	and	helium	are,	by	far,	the	most	abundant	elements	in	
interstellar	clouds.		

• 	However,	H	and	He	are	very	poor	coolants	because	they	cannot	
be	collisionally	induced	to	emit	photons	at	the	low	gas	
temperatures	characteris)c	of	molecular	clouds.	

• 	A	large	frac)on	of	the	total	cooling	
	is	produced	by	a	few	other	atoms		
and	molecules,	notably	gaseous		
water	(HO),	carbon	monoxide	(CO),		
molecular	oxygen	(O),	and	atomic		
carbon	(C).	

From:	h^p://www.cfa.harvard.edu/swas/science1.html	

Cooling	rate	of	primordial	gas	as	a	func[on	of	temperature.	The	solid	
line	represents	the	contribu[on	from	atomic	hydrogen	and	helium	and	
the	dashed	line	represents	the	contribu[on	from	molecular	hydrogen.	

At	temperatures	below	10^4	K	cooling	is	provided	by	H2,	which	is	a	
poor	coolant,	but	at	T>	10^4	K	more	efficient	atomic	hydrogen	line	

cooling	comes	to	play.	Courtesy:	Bromm	(2012)	



Cooling	
•  Collisional	excita)on	followed	by	the	emission	of	an	IR	photon	

Heating and cooling II
Using the result form the T=0 K collapse we studied earlier, we can write so

which means

2) Cooling mechanism Collisional excitation followed by the emission of an IR photon

Due to their thermal velocity, molecules collide all the time, which can lead to an excitation of 
an electron. At disexcitation, a photon is radiated, taking away the energy. (We assume here 
that the cloud is optically thin).

A + B → A* + B 
A* → A + hν

-Frequent collisions (abundant partners)
-Excitation energy comparable to or less than thermal kinetic energy
-High probability of excitation during collision 
-Photon emission before the next collision
-No re-absorption of the photon (low optical depth of gas to line emission)
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Heating and cooling III
Cooling is in general described by a cooling function Λ(T). Its exact value depends on the 
detailed chemical composition, but an order of magnitude can be estimated from the 
reaction rate <σv> multiplied by the amount of energy lost in one collision. Taking σ!10-16 
cm2, v!1 km/s, ΔE ! 0.1 eV ! 10-13 erg, we obtain a typical value of the cooling function: 
Λ(T) ! 10-24 erg / (cm3 s). 

The cooling rate is then obtained by multiplying the cooling function with the abundance 
of booth cooling species.

The cooling time can be estimated (for identical species)as
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Coolants
To calculate the specific cooling rate, one must know the chemical composition of the gas.

The figure shows the relative abundances of a molecule M, x(M)=n(M)/n(H2), for n(H2)=106 

cm-3.

For T>500 K, all the oxygen not locked in CO, is in the form of water.

Neufeld et al. 1995

Chemical networks
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Contribution of coolants

Neufeld et al. 1995

Fractions of the total cooling 
rate accounted for by 
emission of various coolants.

Contours correspond to 
20% dotted
50% dashed
70% solid

Notes

•H (and He) cannot be 
collisionally excited at low T. It 
is there a poor coolant.
•At lower densities and 
temperatures, CO and O are 
dominant.
• At high densities, water (high 
T) and a host of other 
molecules (low T) become 
dominant. 

	lot		
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Numerical	Simula)ons	of	Star	
Forma)on	
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Numerical simulations
There is a large body of literature concerning the collapse of gas clouds. Various initial 
cloud shapes and initial density structures have been investigated. The effects of different 
EOS, radiation transport, and of magnetic fields have been studied. In the absence of the 
latter, these numerical simulations have shown that the key initial parameters are given by: 

•Initial molecular cloud is rotating. First hydrostatic core rotating so fast that it is flattened. 
•After a short time it goes from begin round to a bar-shaped object (dynamical instability). 
•The ends of the bar rotate slower creating spiral arms. These create gravitational torques that transfer angular 
momentum from the centre of the object into the ends of the arms. The result is that some gas forms a large disc 
while, in the centre, the density and temperature increase rapidly. 
•Molecular hydrogen dissociates at the centre and the second collapse to form the star occurs. 
•The calculation stops just after the star forms.

Bate 1998 : First 3D simulation. Single star formation with effect of rotation.Example 1:

1) The initial thermal energy content:

2) The initial rotational energy content:

3) The exponent n of the initial power law density distribution

For β>0.274, a spherical cloud is dynamically unstable to fragmentation.
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Numerical	Simula)ons	II	

• 	The	Forma)on	of	Stars	and	Brown	Dwarfs	and	
the	Trunca)on	of	Protoplanetary	Discs	in	a	Star	
Cluster	(Bate,	Bonnell,	&	Bromm)	
• 	The	calcula)on	models	the	collapse	and	
fragmenta)on	of	a	molecular	cloud	with	a	mass	
50	)mes	that	of	our	Sun.	The	cloud	is	ini)ally	1.2	
light-years	(9.5	million	million	km)	in	diameter,	
with	a	temperature	of	10	K.	
• 	The	cloud	collapses	under	its	own	weight	and	
very	soon	stars	start	to	form.	
• 	Surrounding	some	of	these	stars	are	swirling	
discs	of	gas	which	may	go	on	later	to	form	
planetary	systems	like	our	own	Solar	System.	
• 	The	calcula)on	took	approximately	10^5	CPU	
hours	running	on	up	to	64	processors	on	the	
UKAFF	supercomputer.	In	terms	of	arithme)c	
opera)ons,	the	calcula)on	required	about		10^16	
FLOPS	(i.e.	10	million	billion	arithme)c	ops).	
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Numerical simulations III

Cosmology	School	2016,	Kielce	



Numerical simulations IV

•Isothermal collapse. First core forms with mass ! 0.01 M⊙ and radius ! 7 AU. Rapidly 

rotating, oblate, and has β ! 0.34 > 0.274, therefore dynamically unstable to the growth of 
non-axisymmetric perturbations 

•At t ! 1.023 tff, after about 3 rotations, the first core becomes violently bar-unstable and 
forms trailing spiral arms. This leads to a rapid increase in maximum density as angular 
momentum is removed from the central regions of the first core (now a disc with spiral 
structure) by gravitational torques (t > 1.015 tff). 

•When the maximum temperature reaches 2000 K, molecular hydrogen begins to 
dissociate, resulting in a rapid second collapse to stellar densities (t = 1.030 tff). 

•The collapse is again halted at a density of ! 0.007 g cm#3 with the formation of the 
second hydrostatic, or stellar, core. The initial mass and radius of the stellar core are ! 
0.0015 M⊙) and ! 0.8 R⊙, respectively. 

•Finally, an inner circumstellar disc begins to form around the stellar object, within the region 
undergoing second collapse. The calculation is stopped when the stellar object has a mass 
of ! 0.004 M⊙, the inner circumstellar disc has extended out to ! 0.1 AU, and the outer disc 

(the remnant of the first hydrostatic core) contains ! 0.08 M⊙ and extends out to ! 60 AU.

•β < 0.274 in the region undergoing the second collapse: no formation of a close binary. 
Angular momentum removed by spiral arms (gravitational torques).

Simulation outcome
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Numerical simulations V

Parameter Initial condition

R0 0.8 pc

M0 500 Msun

v supersonic turbulent

T 10 K

μ 2.46

Tff 190 000 yrs

Stop 285 000 yrs

Radiation not included

Magnetic fields not included

Numerical method SPH

Stars and BD sink particles

Accretion radius 5 AU

Min. binary sep. 1 AU

EOS piecewise polytropic

N particles 35 Mio

Bate 2009 : Hydrodynamic 3D simulation of a stellar cluster

Example 2:

Models the collapse and fragmentation of a 500 solar mass 
cloud. The calculation produces a cluster containing more 
than 1250 stars and brown dwarfs to allow comparison 
with clusters such as the Orion Trapezium Cluster. 
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Numerical simulations VII

0 yr: We begin with such a gas 
cloud, 2.6 light-years across, and 
containing 500 times the mass of 
the Sun. The images measure 1 
pc (3.2 lightyears across).

38,000 yr: Clouds of interstellar 
gas are seen to be very turbulent 
with supersonic motions.

76,000 yr: As the calculation 
proceeds, the turbulent motions 
in the cloud form shock waves 
that slowly damp the supersonic 
motions.

152,000 yr: When enough energy 
has been lost in some regions of 
the simulation, gravity can pull 
the gas together to form dense 
"cores".

190,000 yr: The formation of 
stars and brown dwarfs begins 
in the dense cores. As the stars 
and brown dwarfs interact with 
each other, many are ejected 
from the cloud.

The cloud and star cluster at the end 
of simulation (which covers 210,000 
years so far). Some stars and brown 
dwarfs have been ejected to large 
distances from the regions of dense 
gas in which the star formation occurs.

Bate 2009
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Numerical simulations VIII

2) The IMF originates from competition between accretion and ejection which terminates the 
accretion and sets an object’s final mass. Stars and brown dwarfs form the same way, with 
similar accretion rates from the molecular cloud, but stars accrete for longer than brown 
dwarfs before undergoing the dynamical interactions that terminate their accretion.

1) Since all sink particles (and thus stars/BD) are created from pressure-supported fragments, 
their initial masses are just a few Jupiter masses, as given by the opacity limit for 
fragmentation. Subsequently, they may accrete large amounts of material to become higher-
mass brown dwarfs (< 75 MJupiter) or stars (>75 MJupiter), but all the stars and brown dwarfs 
begin as these low-mass pressure-supported fragments.

Main simulation results

3) The calculations produce an IMF 
with a similar form to the observed IMF, 
including a Salpeter-type slope at the 
high-mass end but they over-produce 
brown dwarfs. It is likely due to the 
absence of radiative feedback and/or 
magnetic fields in the calculation.
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• 	ESA’s	Herschel	space	
observatory	has	revealed	that	
nearby	interstellar	clouds	contain	
networks	of	tangled	gaseous	
filaments.	
• 	The	filaments	are	huge,	
stretching	for	tens	of	light	years	
through	space	and	Herschel	has	
shown	that	newly-born	stars	are	
ozen	found	in	the	densest	parts	
of	them.	
• 	One	filament	imaged	by	
Herschel	in	the	Aquila	region	
contains	a	cluster	of	about	100	
infant	stars.	
• Herschel	has	shown	that,	
regardless	of	the	length	or	
density	of	a	filament,	the	width	is	
always	roughly	the	same.	

Star	forma)on	
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The	Forma)on	of	the	First	Stars	
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Simplified	physics	for	the	first	stars	

•  No	magne)c	field	is	present	yet	(?)	
•  Since	only	primordial	fusion	:	only	H/D/He							
->	no	metals	->	no	dust	

•  Ini)al	physical	condi)ons	are	assumed	to	
follow	ΛCDM	(Cold	Dark	Maker	)	

⇒ 		First	Stars	
=	CDM	+	atomic	&	molecular	φsics	of	H/D/He	
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Other	important	assump)on	:											
the	IMF	for	pop	III	stars	…	

dN/dlogM	

logM	

What	is	the	
characteris)c	mass?	

Power	law?	

Turbulence?	
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How	could	pop	III	stars	cool	down?	

Tvir	for	pop	III	

• 	Cooling	rate	of	primordial	gas	
as	a	func)on	of	temperature	
• 	Shown	is	the	contribu)on	from	
atomic	hydrogen	and	helium	
(solid	line),	as	well	as	that	from	
molecular	hydrogen	(dashed	
line).	
• 	Atomic	hydrogen	line	cooling	is	
very	efficient	at	temperatures	of	
T	>	10^4	K,	whereas	at	lower	
temperatures,	cooling	has	to	rely	
on	H2,	which	is	a	poor	coolant.	
• 	This	is	the	regime	of	the	
minihalos	(~	106	M¤),	hos)ng	
the	forma)on	of	the	first	stars.	

Cosmology	School	2016,	Kielce	
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Regions	of	primordial	star	forma)on	
•  Gravita)onal	Evolu)on	of	CDM	
•  Gas	microφsics	(H2	cooling):	

–  Can	gas	sufficiently	cool?	
–  tcooling	<	tfreefall	

•  Collapse	of	First	Luminous	
Objects	expected:	
–  At	zcollapse	=	20	–	30	
–  Mtotal	~	106	M¤	 1	+	zcoll	

M
ha
lo
	[M

¤
]		

Mini-halos	

• 	A	simple,	but	intui)vely	appealing	and	useful,	answer	is	
provided	by	the	Rees-Ostriker-Silk	criterion,	that	the	cooling	
)me	has	to	be	shorter	than	the	free-fall	)me:	tcool	<	tff.	
• 	If	this	criterion	is	fulfilled,	a	gas	cloud	will	be	able	to	condense	
to	high	densi)es,	and	possibly	undergo	gravita)onal	collapse.	
• 	These	important	)mescales	are	defined	as	follows:	tff	≃	1/√Gρ	
and	tcool	≃	nkBT/Λ	where	Λ	is	the	cooling	func)on.	

Bromm	(2013,	1305.5178v2)	

		Mmin	to		
			sa.sfy	
tcool	<	tfreefall	

Mass	of	DM				halo	vs.	collapse	redshiV									
for	various	overdensi.es	
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Schema)c	view	of	the	primordial	star	
forma)on:	qualita)vely	similar	to	Today	

Core	Mass	~	MJ	
Cosmology	School	2016,	Kielce	



Early	POP	III	binaries	
(Turk,	Abel	&	OʼShea	2009,	Science,	325,	601)	

800	AU	

~	10	M¤	 ~	6	M¤	Cosmology	School	2016,	Kielce	



Un)l	recently,	it	was	assumed	that	pop	III	cores	formed	
just	a	single	star,	because	no	fragmenta)on	was	seen	
in	the	simula)ons	during	the	forma)on	of	the	first	
protostar.	As	a	result,	akempts	to	es)mate	the	final	
mass	of	the	primordial	stars	have	concentrated	on	
balancing	the	inward	accre)on	of	gas	from	the	
collapsing	core	by	the	radia)ve	feedback	from	the	
young	protostar,	with	various	calcula)ons	predic)ng	a	
final	mass	in	the	range	30–300	Msun.	
The	fragmenta)on	of	the	gas	arises	from	the	chao)c	
turbulent	flows	that	feed	the	inner	regions	of	the	star-
forming	minihalos.	
When	replacing	very	high	density	collapsing	regions	
with	accre)ng	‘sink’	par)cles	each	of	which	represents	
an	individual	protostar,	smaller	stars	are	created.	
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«	Previous	high	resolu)on	cosmological	simula)ons	predict	the	first	
stars	to	appear	in	the	early	universe	to	be	very	massive	and	to	form	
in	isola)on.	Here	we	discuss	a	cosmological	simula)on	in	which	the	
central	50MSun	clump	breaks	up	into	two	cores,	having	a	mass	ra)o	
of	two	to	one.	»	
	
«	The	problem	of	“finding”	fragmenta)on	in	cosmological	halos	may	
be	one	of	poor	sampling;	if	fragmenta)on	is	rare,	the	small	number	
of	published	calcula)ons	likely	will	not	sample	those	halos	in	which	
it	could	occur.	In	par)cular,	if	fragmenta)on	is	more	likely	to	occur	
in	halos	that	undergo	rapid	merger	history,	the	current	means	of	ab	
ini)o	simula)on	of	Popula)on	III	star	forma)on	may	be	ill-equipped	
to	study	its	likelihood	and	relevance.	»	

Early	POP	III	binaries	
(Turk,	Abel	&	OʼShea	2009,	Science,	325,	601)	
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Pop	III	Star	Forma.on:	disk	fragmenta.on	(Clark	et	al.	2010)	
	• 	Because	gas	in	the	early	universe	did	not	contain	metals,	it	was	thought	that	

primordial	stars	were	solitary	massive	objects.	
• 	But,	the	accre)on	disks	that	formed	around	the	first	stars	were	found	to	be	highly	
suscep)ble	to	fragmenta)on.	
• 	Therefore,	instead	of	forming	in	isola)on,	the	first	stars	almost	always	occur	as	
members	of	mul)ple	stellar	systems,	with	separa)ons	as	small	as	the	distance	between	
Earth	an	the	Sun.	
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Pop	III	Star	Forma.on:	Disk	Fragmenta.on	(Clark	et	al.	2011)		

LeV:	the	Toomre	‘Q’	parameter	provides	a	measure	of	the	gravita)onal	instability	of	the	disk.	For	high	
Q,	the	disk	is	stable,	while	for	values	around	1,	the	disk	is	unstable	to	fragmenta)on.	As	the	disk	
grows,	the	value	of	Q	remains	around	1	in	the	outer	regions,	and	so	the	dynamics	of	the	disk	is	
dominated	by	gravita)onal	instabili)es.	
Right:	the	accre)on	rate	through	the	disk	and	envelope	as	a	func)on	of	radius	from	the	central	
protostar	helps	to	explain	why	the	disk	became	so	unstable.	The	accre)on	rate	through	the	disk	is	
considerably	lower	than	the	rate	at	which	material	is	added	to	the	disk.	The	system	is	unable	to	
process	the	material	in	the	disk	quickly	enough	before	more	was	added	from	the	infalling	envelope.	
As	a	result,	the	disk	grows	in	mass,	became	gravita)onally	unstable,	and	ul)mately	fragments	

Q	

Cosmology	School	2016,	Kielce	

mass	transfer	rate	through	the	disk		
mass	infall	rate	through	spherical	shells		



Pop	III	Star	Forma.on:	further	evolu.on	(Greif	et	al.	2011)	
• 	The	panels	show	the	density-
squared	weighted	number	
density	of	H	nuclei	projected	
along	the	line	of	sight.	

• 	The	gas	virializes	on	a	scale	
of	~5	kpc,	followed	by	the	
collapse	of	the	central	~1	pc,	
where	the	gas	becomes	self-
gravita)ng	and	decouples	
from	the	dark	maker.	

• 	In	the	final	stages	of	the	
collapse,	a	fully	molecular	core	
on	a	scale	of	a	few	hundred	
AU	forms.	

Cosmology	School	2016,	Kielce	



Pop	III	Star	Forma.on:	Further	Evolu.on		
(Greif	et	al.	2011,	ApJ,	737,	75)	

• 	Again:	gravita)onally	unstable	disks	->	mul)ple	stars	form	
• 	Quite	a	bit	of	sta)s)cal	varia)on	

• 	The	central	2000	AU	azer	
1000	yr	of	fragmenta)on	
and	accre)on.	
• 	Black	dots,	crosses	and	
stars	denote	protostars	
with	masses	below	1	M⊙,	
between	1	M⊙	and	3	M⊙,	
and	above	3	M⊙.	
• 	A	rela)vely	rich	
protostellar	cluster	with	a	
range	of	masses	has	
survived	in	each	case.	In	a	
few	minihalos,	low-mass	
protostars	have	been	
ejected	out	of	the	central	
gas	cloud,	such	that	they	
are	no	longer	visible.	
• 	In	simula)on	MH-2,	two	
independent	clumps	have	
collapsed	almost	
simultaneously	and	formed	
their	own	clusters	before	
eventually	merging	

Cosmology	School	2016,	Kielce	



Pop	III	IMF:	Early	Situa.on	
(Greif	et	al.	2011,	ApJ,	737,	75)	

• 	Azer	t	~	1000	yr	of	fragmenta)on	and	accre)on	
• 	A	“top-heavy”	IMF:	dN/dln	m	~	m^x	(x=0)	(cf.	Salpeter:	x	=	-1.35)	

Cosmology	School	2016,	Kielce	



Growth	under	Protostellar	Feedback	

Core	Mass	~	MJ	

•		Radia)on	may	impede	growth,	once	M	>10	Mo	

Cosmology	School	2016,	Kielce	



Pop	III	Star	Forma.on:	
Radia.ve	Feedback	(Stacy	et	

al.	arXiv:	1109.3147)	

• 	A	dominant	binary	has	formed			
(~	20	and	~10	M¤)	azer	~	5	000	yr	
of	accre)on	
• 	Note:	Hosokawa	et	al.	2011	
(Science	Express):	->	find	similar	
result	(only	in	2D,	but	with	beker	
Radia)on-Hydro)	

Cosmology	School	2016,	Kielce	



The	first	stars:	final	IMF	
• 	Numerical	simula)ons:	(Bromm,	Coppi,	&	Larson	(1999,	2002),	Abel,	Bryan,	&	
Norman	(2000,	2002),	Nakamura	&	Umemura	(2001,	2002),	Yoshida	et	al.	(2006,	2008,	
OʼShea	&	Norman	(2007),	Gao	et	al.	(2007),	Clark	et	al.	(2011),	Greif	et	al.	(2011)	
• 	Likely	Outcome	->	Top-heavy	ini.al	mass	func.on	(IMF)	

dN/dlogM	

logM	

POP	I	/	II	 POP	III	

~	1	M¤	 ~	10	M¤	

Characteris.c	stellar	mass	

Cosmology	School	2016,	Kielce	


